These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32856004)

  • 1. Anthraquinone-Mediated Fuel Cell Anode with an Off-Electrode Heterogeneous Catalyst Accessing High Power Density when Paired with a Mediated Cathode.
    Preger Y; Johnson MR; Biswas S; Anson CW; Root TW; Stahl SS
    ACS Energy Lett; 2020 May; 5(5):1407-1412. PubMed ID: 32856004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell.
    Petrov M; Chikin D; Abunaeva L; Glazkov A; Pichugov R; Vinyukov A; Levina I; Motyakin M; Mezhuev Y; Konev D; Antipov A
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Chemically Regenerative Redox Fuel Cells Using a NO
    Han SB; Kwak DH; Park HS; Choi IA; Park JY; Kim SJ; Kim MC; Hong S; Park KW
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2893-2897. PubMed ID: 28157264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xerogel based catalyst for improved cathode performance in microbial fuel cells.
    Thapa BS; Seetharaman S; Chetty R; Chandra TS
    Enzyme Microb Technol; 2019 May; 124():1-8. PubMed ID: 30797474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O
    Anson CW; Stahl SS
    Chem Rev; 2020 Apr; 120(8):3749-3786. PubMed ID: 32216295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.
    Tang X; Li H; Du Z; Ng HY
    Bioresour Technol; 2014 Jul; 164():184-8. PubMed ID: 24859209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.
    Sun J; Li W; Li Y; Hu Y; Zhang Y
    Bioresour Technol; 2013 Aug; 142():407-14. PubMed ID: 23748088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells.
    Logan BE; Zikmund E; Yang W; Rossi R; Kim KY; Saikaly PE; Zhang F
    Environ Sci Technol; 2018 Aug; 52(15):8977-8985. PubMed ID: 29965737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
    López-González B; Dector A; Cuevas-Muñiz FM; Arjona N; Cruz-Madrid C; Arana-Cuenca A; Guerra-Balcázar M; Arriaga LG; Ledesma-García J
    Biosens Bioelectron; 2014 Dec; 62():221-6. PubMed ID: 25016252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
    Wu W; Zhang Y; Ding D; He T
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29218736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC).
    Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A
    Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped Carbon-CoO
    Peng X; Omasta TJ; Magliocca E; Wang L; Varcoe JR; Mustain WE
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1046-1051. PubMed ID: 30414220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.
    Chen Y; Bellini M; Bevilacqua M; Fornasiero P; Lavacchi A; Miller HA; Wang L; Vizza F
    ChemSusChem; 2015 Feb; 8(3):524-33. PubMed ID: 25504942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials.
    Lowy DA; Tender LM; Zeikus JG; Park DH; Lovley DR
    Biosens Bioelectron; 2006 May; 21(11):2058-63. PubMed ID: 16574400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.