These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 32856384)
1. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Young AT; White OC; Daniele MA Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384 [TBL] [Abstract][Full Text] [Related]
2. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
3. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources. Elkhoury K; Morsink M; Tahri Y; Kahn C; Cleymand F; Shin SR; Arab-Tehrany E; Sanchez-Gonzalez L Int J Biol Macromol; 2021 Jul; 183():918-926. PubMed ID: 33971227 [TBL] [Abstract][Full Text] [Related]
5. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
6. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
7. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409 [TBL] [Abstract][Full Text] [Related]
9. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Zhou M; Lee BH; Tan YJ; Tan LP Biofabrication; 2019 Mar; 11(2):025011. PubMed ID: 30743259 [TBL] [Abstract][Full Text] [Related]
11. Comparison of globular albumin methacryloyl and random-coil gelatin methacryloyl: Preparation, hydrogel properties, cell behaviors, and mineralization. Chen Y; Zhai MJ; Mehwish N; Xu MD; Wang Y; Gong YX; Ren MM; Deng H; Lee BH Int J Biol Macromol; 2022 Apr; 204():692-708. PubMed ID: 35150780 [TBL] [Abstract][Full Text] [Related]
12. Understanding the Molecular Conformation and Viscoelasticity of Low Sol-Gel Transition Temperature Gelatin Methacryloyl Suspensions. Padilla C; Quero F; Pępczyńska M; Díaz-Calderon P; Acevedo JP; Byres N; Blaker JJ; MacNaughtan W; Williams HEL; Enrione J Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108653 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Sheikhi A; de Rutte J; Haghniaz R; Akouissi O; Sohrabi A; Di Carlo D; Khademhosseini A Biomaterials; 2019 Feb; 192():560-568. PubMed ID: 30530245 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Wang Z; Tian Z; Menard F; Kim K Biofabrication; 2017 Aug; 9(4):044101. PubMed ID: 28770808 [TBL] [Abstract][Full Text] [Related]
15. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
16. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Zhang Y; Chen H; Li J Int J Biol Macromol; 2022 Nov; 221():91-107. PubMed ID: 36057299 [TBL] [Abstract][Full Text] [Related]
17. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
18. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
19. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
20. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Xie M; Gao Q; Zhao H; Nie J; Fu Z; Wang H; Chen L; Shao L; Fu J; Chen Z; He Y Small; 2019 Jan; 15(4):e1804216. PubMed ID: 30569632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]