BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32856425)

  • 1. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds.
    Ghane N; Khalili S; Nouri Khorasani S; Esmaeely Neisiany R; Das O; Ramakrishna S
    J Biomed Mater Res A; 2021 Apr; 109(4):437-452. PubMed ID: 32856425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration.
    Zhu Y; Wang A; Patel S; Kurpinski K; Diao E; Bao X; Kwong G; Young WL; Li S
    Tissue Eng Part C Methods; 2011 Jul; 17(7):705-15. PubMed ID: 21501089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured guidance for peripheral nerve injuries: a review with a perspective in the oral and maxillofacial area.
    Sivolella S; Brunello G; Ferrarese N; Della Puppa A; D'Avella D; Bressan E; Zavan B
    Int J Mol Sci; 2014 Feb; 15(2):3088-117. PubMed ID: 24562333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Scaffolds for Biomedical Applications in Peripheral Nerve Reconstruction.
    Zhang M; Li C; Zhou LP; Pi W; Zhang PX
    Molecules; 2021 May; 26(9):. PubMed ID: 34063072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair.
    Zheng C; Yang Z; Chen S; Zhang F; Rao Z; Zhao C; Quan D; Bai Y; Shen J
    Theranostics; 2021; 11(6):2917-2931. PubMed ID: 33456580
    [No Abstract]   [Full Text] [Related]  

  • 10. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.
    Kijeńska E; Prabhakaran MP; Swieszkowski W; Kurzydlowski KJ; Ramakrishna S
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1093-102. PubMed ID: 22438340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.
    Bongiovanni Abel S; Montini Ballarin F; Abraham GA
    Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of nanofibrous scaffolds in neural tissue engineering.
    Cao H; Liu T; Chew SY
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.
    Jin G; He R; Sha B; Li W; Qing H; Teng R; Xu F
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():995-1005. PubMed ID: 30184829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.
    Ingavle GC; Leach JK
    Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering.
    Zhang K; Huang D; Yan Z; Wang C
    J Biomed Mater Res A; 2017 Jul; 105(7):1900-1910. PubMed ID: 28256802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration.
    Du J; Chen H; Qing L; Yang X; Jia X
    Biomater Sci; 2018 May; 6(6):1299-1311. PubMed ID: 29725688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering.
    Zha F; Chen W; Zhang L; Yu D
    J Biomater Sci Polym Ed; 2020 Mar; 31(4):519-548. PubMed ID: 31774364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review.
    Puppi D; Zhang X; Yang L; Chiellini F; Sun X; Chiellini E
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1562-79. PubMed ID: 24678016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth.
    Zhang K; Zheng H; Liang S; Gao C
    Acta Biomater; 2016 Jun; 37():131-42. PubMed ID: 27063493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.