These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 32856661)

  • 1. One-step liquid molding based modular microfluidic circuits.
    Li C; Wang X; Xu J; Ma B
    Analyst; 2020 Oct; 145(21):6813-6820. PubMed ID: 32856661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
    Lee TY; Han K; Barrett DO; Park S; Soper SA; Murphy MC
    Sens Actuators B Chem; 2018 Jan; 254():1249-1258. PubMed ID: 29531428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Reconfigurable Modular Microfluidic System for Generating Gel Microspheres.
    Chen X; Mo D; Gong M
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32098210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid integrated PDMS microfluidics with a silica capillary.
    Dimov IK; Riaz A; Ducrée J; Lee LP
    Lab Chip; 2010 Jun; 10(11):1468-71. PubMed ID: 20480112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubik's Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices.
    Lai X; Sun Y; Yang M; Wu H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary-Based Microfluidic Fabrication of Liquid Metal Microspheres toward Functional Microelectrodes and Photothermal Medium.
    Lin P; Wei Z; Yan Q; Xie J; Fan Y; Wu M; Chen Y; Cheng Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25295-25305. PubMed ID: 31260237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening.
    Trivedi V; Doshi A; Kurup GK; Ereifej E; Vandevord PJ; Basu AS
    Lab Chip; 2010 Sep; 10(18):2433-42. PubMed ID: 20717617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A "dry and wet hybrid" lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing.
    Paul D; Saias L; Pedinotti JC; Chabert M; Magnifico S; Pallandre A; De Lambert B; Houdayer C; Brugg B; Peyrin JM; Viovy JL
    Biomicrofluidics; 2011 Apr; 5(2):24102. PubMed ID: 21559239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation.
    Mei L; Jin M; Xie S; Yan Z; Wang X; Zhou G; van den Berg A; Shui L
    Lab Chip; 2018 Sep; 18(18):2806-2815. PubMed ID: 30112532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.