These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32856897)

  • 1. Plasmon-Enhanced Greenhouse Selectivity for High-Temperature Solar Thermal Energy Conversion.
    Berquist ZJ; Turaczy KK; Lenert A
    ACS Nano; 2020 Oct; 14(10):12605-12613. PubMed ID: 32856897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels.
    Zhao L; Bhatia B; Yang S; Strobach E; Weinstein LA; Cooper TA; Chen G; Wang EN
    ACS Nano; 2019 Jul; 13(7):7508-7516. PubMed ID: 31199125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Day Freshwater Harvesting by Selective Solar Absorption and Radiative Cooling.
    Xi Z; Li S; Yu L; Yan H; Chen M
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26255-26263. PubMed ID: 35622905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers.
    Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L
    iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.
    Günay AA; Kim H; Nagarajan N; Lopez M; Kantharaj R; Alsaati A; Marconnet A; Lenert A; Miljkovic N
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12603-12611. PubMed ID: 29565115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.
    Mandal J; Wang D; Overvig AC; Shi NN; Paley D; Zangiabadi A; Cheng Q; Barmak K; Yu N; Yang Y
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28845533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications.
    Ganesh S; Arumugam S
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):462-466. PubMed ID: 27036625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management.
    Yang Z; Jia Y; Zhang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24755-24765. PubMed ID: 35580302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology.
    Kim H; McSherry S; Brown B; Lenert A
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43553-43559. PubMed ID: 32799439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion.
    Huang Z; Cao C; Wang Q; Zhang H; Owens CE; Hart AJ; Cui K
    Nano Lett; 2022 Nov; 22(21):8526-8533. PubMed ID: 36302098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion.
    Ma C; Yan J; Huang Y; Wang C; Yang G
    Sci Adv; 2018 Aug; 4(8):eaas9894. PubMed ID: 30105303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations.
    Chen M; Pang D; Yan H
    iScience; 2022 Aug; 25(8):104726. PubMed ID: 35865137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber.
    Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Nanoparticles Boost Solar-to-Electricity Generation at Ambient Conditions.
    Kashyap RK; Pillai PP
    Nano Lett; 2024 May; 24(18):5585-5592. PubMed ID: 38662652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Spectrally Selective Absorber Using the ZrB
    Wang J; Ren Z; Luo Y; Wu Z; Liu Y; Hou S; Liu X; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40522-40530. PubMed ID: 34407618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.