BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32857084)

  • 1.
    Torres MA; Micheletto J; de Liz MV; Pagioro TA; Rocha Martins LR; Martins de Freitas A
    Photochem Photobiol Sci; 2020 Oct; 19(10):1470-1477. PubMed ID: 32857084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The solar photo-Fenton process at neutral pH applied to microcystin-LR degradation: Fe
    Micheletto J; de Torres MA; de Paula VCS; Cerutti VE; Pagioro TA; Cass QB; Martins LRR; de Liz MV; de Freitas AM
    Photochem Photobiol Sci; 2020 Aug; 19(8):1078-1087. PubMed ID: 32618316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Zinc on
    Perez JL; Chu T
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 32019107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma.
    Wang J; Zhang J; Cheng G; Shangguan Y; Yang G; Liu X
    Chemosphere; 2024 Mar; 352():141436. PubMed ID: 38360412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcystin-LR (MC-LR) inhibits green algae growth by regulating antioxidant and photosynthetic systems.
    Li Z; Zheng Y; Ma H; Cui F
    Harmful Algae; 2024 Apr; 134():102623. PubMed ID: 38705613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins -LR and -RR.
    Almuhtaram H; Hofmann R
    J Hazard Mater; 2022 Feb; 424(Pt B):127357. PubMed ID: 34687995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values.
    Huang Y; Pan H; Liu H; Xi Y; Ren D
    Toxicon; 2019 Nov; 169():103-108. PubMed ID: 31494204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sono-Fenton hybrid process on the inactivation of Microcystis aeruginosa: Extracellular and intracellular oxidation.
    Wu X; Liu J; Zhu JJ
    Ultrason Sonochem; 2019 May; 53():68-76. PubMed ID: 30600211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation.
    Zhang H; Dan Y; Adams CD; Shi H; Ma Y; Eichholz T
    Chemosphere; 2017 Aug; 181():562-568. PubMed ID: 28463731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides.
    Iwinski KJ; Calomeni AJ; Geer TD; Rodgers JH
    Chemosphere; 2016 Mar; 147():74-81. PubMed ID: 26761600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR.
    Yu J; Zhu H; Shutes B; Wang X
    Environ Pollut; 2022 May; 301():118971. PubMed ID: 35167928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa.
    Li L; Shao C; Lin TF; Shen J; Yu S; Shang R; Yin D; Zhang K; Gao N
    Environ Sci Technol; 2014; 48(5):2885-92. PubMed ID: 24502417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of Microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode.
    Wang X; Xiang P; Zhang Y; Wan Y; Lian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20631-20639. PubMed ID: 29752669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes.
    Bandala ER; Martínez D; Martínez E; Dionysiou DD
    Toxicon; 2004 Jun; 43(7):829-32. PubMed ID: 15284017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation.
    Wang X; Luo Y; Zhang S; Zhou L
    J Environ Sci (China); 2024 Jan; 135():285-295. PubMed ID: 37778804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the removal and degradation mechanism of microcystin-LR by the UV/Fenton system.
    Li Z; Chen J; Wang C; Zhao J; Wei Q; Ma X; Yang G
    Sci Total Environ; 2023 Sep; 892():164665. PubMed ID: 37277039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa.
    Ou H; Gao N; Deng Y; Qiao J; Wang H
    Water Res; 2012 Mar; 46(4):1241-50. PubMed ID: 22209277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction.
    Chen Y; Li J; Wei J; Kawan A; Wang L; Zhang X
    J Hazard Mater; 2017 Jan; 321():888-895. PubMed ID: 27745956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa.
    Ou H; Gao N; Wei C; Deng Y; Qiao J
    J Hazard Mater; 2012 Jun; 219-220():267-75. PubMed ID: 22537919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.