These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32857219)
1. High-Efficiency Silicon Inverted Pyramid-Based Passivated Emitter and Rear Cells. Gao K; Liu Y; Fan Y; Shi L; Zhuang Y; Cui Y; Yuan S; Wan Y; Shen W; Huang Z Nanoscale Res Lett; 2020 Aug; 15(1):174. PubMed ID: 32857219 [TBL] [Abstract][Full Text] [Related]
2. Inverted Pyramid Morphology Control by Acid Modification and Application for PERC Solar Cells. Gao K; Liu Y; Cheng H; Zhong S; Tong R; Kong X; Song X; Huang Z ACS Omega; 2021 Dec; 6(48):32925-32929. PubMed ID: 34901643 [TBL] [Abstract][Full Text] [Related]
3. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system. Lien SY; Yang CH; Wu KC; Kung CY Nanoscale Res Lett; 2015; 10():93. PubMed ID: 25852389 [TBL] [Abstract][Full Text] [Related]
4. Impact of HfO₂ as a Passivation Layer in the Solar Cell Efficiency Enhancement in Passivated Emitter Rear Cell Type. Jha RK; Singh P; Goswami M; Singh BR J Nanosci Nanotechnol; 2020 Jun; 20(6):3718-3723. PubMed ID: 31748069 [TBL] [Abstract][Full Text] [Related]
5. High-Efficiency p-Type Si Solar Cell Fabricated by Using Firing-Through Aluminum Paste on the Cell Back Side. Wu G; Liu Y; Liu M; Zhang Y; Zhu P; Wang M; Zheng G; Wang G; Wang D Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627292 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure. Zhang C; Chen L; Zhu Y; Guan Z Nanoscale Res Lett; 2018 Apr; 13(1):91. PubMed ID: 29616361 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer. Chen HY; Lu HL; Ren QH; Zhang Y; Yang XF; Ding SJ; Zhang DW Nanoscale; 2015 Oct; 7(37):15142-8. PubMed ID: 26243694 [TBL] [Abstract][Full Text] [Related]
8. A Grain Orientation-Independent Single-Step Saw Damage Gettering/Wet texturing Process for Efficient Silicon Solar Cells. Jung Y; Min KH; Post R; Kwapil W; Schubert MC; Kim D; Kang Y; Lee HS Small; 2023 May; 19(19):e2206831. PubMed ID: 36811154 [TBL] [Abstract][Full Text] [Related]
9. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells. Sun Y; Gao P; He J; Zhou S; Ying Z; Yang X; Xiang Y; Ye J Nanoscale Res Lett; 2016 Dec; 11(1):310. PubMed ID: 27352263 [TBL] [Abstract][Full Text] [Related]
10. Data of ALD Al Huang H; Lv J; Bao Y; Xuan R; Sun S; Sneck S; Li S; Modanese C; Savin H; Wang A; Zhao J Data Brief; 2017 Apr; 11():19-26. PubMed ID: 28127578 [TBL] [Abstract][Full Text] [Related]
11. Vacuum-Free, Room-Temperature Organic Passivation of Silicon: Toward Very Low Recombination of Micro-/Nanotextured Surface Structures. Chen J; Ge K; Zhang C; Guo J; Yang L; Song D; Li F; Xu Z; Xu Y; Mai Y ACS Appl Mater Interfaces; 2018 Dec; 10(51):44890-44896. PubMed ID: 30499658 [TBL] [Abstract][Full Text] [Related]
12. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se Vermang B; Wätjen JT; Fjällström V; Rostvall F; Edoff M; Kotipalli R; Henry F; Flandre D Prog Photovolt; 2014 Oct; 22(10):1023-1029. PubMed ID: 26300619 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Si Passivation and PERC Solar Cell Efficiency by Atomic Layer Deposited Aluminum Oxide with Two-step Post Annealing. Hsu CH; Cho YS; Wu WY; Lien SY; Zhang XY; Zhu WZ; Zhang S; Chen SY Nanoscale Res Lett; 2019 Apr; 14(1):139. PubMed ID: 31001714 [TBL] [Abstract][Full Text] [Related]
14. Low Cost Local Contact Opening by Using Polystyrene Spheres Spin-Coating Method for PERC Solar Cells. Hsu CH; Yang CH; Wang YH; Huang CW; Lien SY; Kung CY; Lou JC Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773674 [TBL] [Abstract][Full Text] [Related]
15. Anti-reflection effect of high refractive index polyurethane with different light trapping structures on solar cells. Wang S; Cui H; Jin S; Pi X; He H; Shou C; Yang D; Wang L Heliyon; 2023 Sep; 9(9):e20264. PubMed ID: 37810064 [TBL] [Abstract][Full Text] [Related]
16. Low Reflection and Low Surface Recombination Rate Nano-Needle Texture Formed by Two-Step Etching for Solar Cells. Hsu CH; Liu SM; Lien SY; Zhang XY; Cho YS; Huang YH; Zhang S; Chen SY; Zhu WZ Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31569509 [TBL] [Abstract][Full Text] [Related]
17. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells. Park C; Balaji N; Jung S; Choi J; Ju M; Lee S; Kim J; Bong S; Chung S; Lee YJ; Yi J J Nanosci Nanotechnol; 2015 Oct; 15(10):7699-705. PubMed ID: 26726397 [TBL] [Abstract][Full Text] [Related]
18. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition. Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200 [TBL] [Abstract][Full Text] [Related]
19. Liquid-phase-deposited silicon oxide film as a mask for single-sided texturing of monocrystalline Si wafers. Lin T; Jiang K; Zhou BX; Xu SF; Cai WB ACS Appl Mater Interfaces; 2014 Jan; 6(2):1207-12. PubMed ID: 24372321 [TBL] [Abstract][Full Text] [Related]
20. Inverted pyramid structures fabricated on monocrystalline silicon surface with a NaOH solution. Huo C; Fu H; Peng KQ Heliyon; 2024 Jan; 10(1):e23871. PubMed ID: 38223722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]