These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32857500)

  • 1. Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers.
    Beleh OM; Miller E; Toste FD; Miller SJ
    J Am Chem Soc; 2020 Sep; 142(38):16461-16470. PubMed ID: 32857500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C-N Bond-Forming Cross-Coupling and Catalyst-Controlled Atroposelective Cyclodehydration.
    Kwon Y; Chinn AJ; Kim B; Miller SJ
    Angew Chem Int Ed Engl; 2018 May; 57(21):6251-6255. PubMed ID: 29637680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of atropisomerically defined, highly substituted biaryl scaffolds through catalytic enantioselective bromination and regioselective cross-coupling.
    Gustafson JL; Lim D; Barrett KT; Miller SJ
    Angew Chem Int Ed Engl; 2011 May; 50(22):5125-9. PubMed ID: 21520374
    [No Abstract]   [Full Text] [Related]  

  • 4. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination.
    Gustafson JL; Lim D; Miller SJ
    Science; 2010 Jun; 328(5983):1251-5. PubMed ID: 20522769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst Control over Twofold and Higher-Order Stereogenicity by Atroposelective Arene Formation.
    Schmidt TA; Sparr C
    Acc Chem Res; 2021 Jun; 54(12):2764-2774. PubMed ID: 34056908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system.
    Barrett KT; Metrano AJ; Rablen PR; Miller SJ
    Nature; 2014 May; 509(7498):71-5. PubMed ID: 24747399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C-N Axis via Enantioselective Catalysis.
    Xiao X; Chen B; Yao YP; Zhou HJ; Wang X; Wang NZ; Chen FE
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity.
    Metrano AJ; Miller SJ
    Acc Chem Res; 2019 Jan; 52(1):199-215. PubMed ID: 30525436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective Synthesis of Atropisomers with Multiple Stereogenic Axes.
    Bao X; Rodriguez J; Bonne D
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12623-12634. PubMed ID: 32202361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective synthesis of 3-arylquinazolin-4(3H)-ones via peptide-catalyzed atroposelective bromination.
    Diener ME; Metrano AJ; Kusano S; Miller SJ
    J Am Chem Soc; 2015 Sep; 137(38):12369-77. PubMed ID: 26343278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and Enantioselective Control of the C-N Stereogenic Axis via the Pictet-Spengler Reaction.
    Kim A; Kim A; Park S; Kim S; Jo H; Ok KM; Lee SK; Song J; Kwon Y
    Angew Chem Int Ed Engl; 2021 May; 60(22):12279-12283. PubMed ID: 33651459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Enantioselective Dihalogenation in Total Synthesis.
    Landry ML; Burns NZ
    Acc Chem Res; 2018 May; 51(5):1260-1271. PubMed ID: 29664281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxytetraphenylenes, a new type of self-assembling building block and chiral catalyst.
    Huang H; Hau CK; Law CC; Wong HN
    Org Biomol Chem; 2009 Apr; 7(7):1249-57. PubMed ID: 19300805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly enantioselective electrophilic α-bromination of enecarbamates: chiral phosphoric acid and calcium phosphate salt catalysts.
    Alix A; Lalli C; Retailleau P; Masson G
    J Am Chem Soc; 2012 Jun; 134(25):10389-92. PubMed ID: 22686436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst.
    Uraguchi D; Yoshioka K; Ooi T
    Nat Commun; 2017 Mar; 8():14793. PubMed ID: 28317928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers.
    Ye F; Xu Z; Xu LW
    Acc Chem Res; 2021 Jan; 54(2):452-470. PubMed ID: 33375791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Atroposelective Synthesis of
    Vaidya SD; Toenjes ST; Yamamoto N; Maddox SM; Gustafson JL
    J Am Chem Soc; 2020 Feb; 142(5):2198-2203. PubMed ID: 31944689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atroposelective Arene-Forming Alkene Metathesis.
    Jončev Z; Sparr C
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202211168. PubMed ID: 36283028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral brønsted Acid-catalyzed stereoselective Mannich-type reaction of azlactones with aldimines.
    Ávila EP; Justo RM; Gonçalves VP; Pereira AA; Diniz R; Amarante GW
    J Org Chem; 2015 Jan; 80(1):590-4. PubMed ID: 25469764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst Control over Threefold Stereogenicity: Selective Synthesis of Atropisomeric Sulfones with Stereogenic C-S Axes.
    Schmidt TA; Schumann S; Ostertag A; Sparr C
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202302084. PubMed ID: 36916136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.