These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32857505)

  • 1. Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction.
    Zorn KM; Foil DH; Lane TR; Russo DP; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Oct; 54(19):12202-12213. PubMed ID: 32857505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Machine Learning Models for the Androgen Receptor.
    Zorn KM; Foil DH; Lane TR; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Nov; 54(21):13690-13700. PubMed ID: 33085465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
    Ciallella HL; Russo DP; Aleksunes LM; Grimm FA; Zhu H
    Lab Invest; 2021 Apr; 101(4):490-502. PubMed ID: 32778734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
    Zhang L; Sedykh A; Tripathi A; Zhu H; Afantitis A; Mouchlis VD; Melagraki G; Rusyn I; Tropsha A
    Toxicol Appl Pharmacol; 2013 Oct; 272(1):67-76. PubMed ID: 23707773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
    Mansouri K; Abdelaziz A; Rybacka A; Roncaglioni A; Tropsha A; Varnek A; Zakharov A; Worth A; Richard AM; Grulke CM; Trisciuzzi D; Fourches D; Horvath D; Benfenati E; Muratov E; Wedebye EB; Grisoni F; Mangiatordi GF; Incisivo GM; Hong H; Ng HW; Tetko IV; Balabin I; Kancherla J; Shen J; Burton J; Nicklaus M; Cassotti M; Nikolov NG; Nicolotti O; Andersson PL; Zang Q; Politi R; Beger RD; Todeschini R; Huang R; Farag S; Rosenberg SA; Slavov S; Hu X; Judson RS
    Environ Health Perspect; 2016 Jul; 124(7):1023-33. PubMed ID: 26908244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Machine Learning Models for Aromatase (P450 19A1).
    Zorn KM; Foil DH; Lane TR; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Dec; 54(23):15546-15555. PubMed ID: 33207874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.
    Browne P; Judson RS; Casey WM; Kleinstreuer NC; Thomas RS
    Environ Sci Technol; 2015 Jul; 49(14):8804-14. PubMed ID: 26066997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity.
    Wegner SH; Pinto CL; Ring CL; Wambaugh JF
    Environ Int; 2020 Apr; 137():105470. PubMed ID: 32050122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.
    Ng HW; Doughty SW; Luo H; Ye H; Ge W; Tong W; Hong H
    Chem Res Toxicol; 2015 Dec; 28(12):2343-51. PubMed ID: 26524122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
    Minerali E; Foil DH; Zorn KM; Lane TR; Ekins S
    Mol Pharm; 2020 Jul; 17(7):2628-2637. PubMed ID: 32422053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ternary classification using machine learning methods of distinct estrogen receptor activities within a large collection of environmental chemicals.
    Zhang Q; Yan L; Wu Y; Ji L; Chen Y; Zhao M; Dong X
    Sci Total Environ; 2017 Feb; 580():1268-1275. PubMed ID: 28011018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity.
    Judson RS; Houck KA; Watt ED; Thomas RS
    Regul Toxicol Pharmacol; 2017 Dec; 91():39-49. PubMed ID: 28993267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites.
    Pinto CL; Mansouri K; Judson R; Browne P
    Chem Res Toxicol; 2016 Sep; 29(9):1410-27. PubMed ID: 27509301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders.
    Piir G; Sild S; Maran U
    Chemosphere; 2024 Jan; 347():140671. PubMed ID: 37951393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.