These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32857630)

  • 1. Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow.
    Richardson KJ; Kuck L; Simmonds MJ
    Am J Physiol Heart Circ Physiol; 2020 Oct; 319(4):H866-H872. PubMed ID: 32857630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes.
    Kuck L; Peart JN; Simmonds MJ
    Am J Physiol Heart Circ Physiol; 2022 Jul; 323(1):H24-H37. PubMed ID: 35559724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow.
    Jensen FB
    J Exp Biol; 2009 Nov; 212(Pt 21):3387-93. PubMed ID: 19837879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow.
    Xu S; Li X; LaPenna KB; Yokota SD; Huke S; He P
    Cardiovasc Res; 2017 Apr; 113(5):508-518. PubMed ID: 28158679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
    Racine ML; Dinenno FA
    J Physiol; 2019 Sep; 597(17):4503-4519. PubMed ID: 31310005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses.
    Arciero JC; Carlson BE; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1562-71. PubMed ID: 18689501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide generated by red blood cells following exposure to shear stress dilates isolated small mesenteric arteries under hypoxic conditions.
    Ulker P; Gunduz F; Meiselman HJ; Baskurt OK
    Clin Hemorheol Microcirc; 2013; 54(4):357-69. PubMed ID: 23076000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream.
    Carroll JS; Ku CJ; Karunarathne W; Spence DM
    Anal Chem; 2007 Jul; 79(14):5133-8. PubMed ID: 17580956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfusion of the isolated trout heart coronary circulation with red blood cells: effects of oxygen supply and nitrite on coronary flow and myocardial oxygen consumption.
    Jensen FB; Agnisola C
    J Exp Biol; 2005 Oct; 208(Pt 19):3665-74. PubMed ID: 16169944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
    Keller AS; Diederich L; Panknin C; DeLalio LJ; Drake JC; Sherman R; Jackson EK; Yan Z; Kelm M; Cortese-Krott MM; Isakson BE
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C593-C603. PubMed ID: 28855161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active modulation of human erythrocyte mechanics.
    Kuck L; Peart JN; Simmonds MJ
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C250-C257. PubMed ID: 32579474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell dynamics: from cell deformation to ATP release.
    Wan J; Forsyth AM; Stone HA
    Integr Biol (Camb); 2011 Oct; 3(10):972-81. PubMed ID: 21935538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure.
    Datta B; Tufnell-Barrett T; Bleasdale RA; Jones CJ; Beeton I; Paul V; Frenneaux M; James P
    Circulation; 2004 Mar; 109(11):1339-42. PubMed ID: 15023874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
    Chen X; Jaron D; Barbee KA; Buerk DG
    J Appl Physiol (1985); 2006 Feb; 100(2):482-92. PubMed ID: 16210436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans.
    González-Alonso J
    J Physiol; 2012 Oct; 590(20):5001-13. PubMed ID: 22711955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
    Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell-derived ATP as a regulator of skeletal muscle perfusion.
    Ellsworth ML
    Med Sci Sports Exerc; 2004 Jan; 36(1):35-41. PubMed ID: 14707765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.