These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32857780)

  • 21. High vulnerability of juvenile Nathusius' pipistrelle bats (Pipistrellus nathusii) at wind turbines.
    Kruszynski C; Bailey LD; Bach L; Bach P; Fritze M; Lindecke O; Teige T; Voigt CC
    Ecol Appl; 2022 Mar; 32(2):e2513. PubMed ID: 34877754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geographic origins and population genetics of bats killed at wind-energy facilities.
    Pylant CL; Nelson DM; Fitzpatrick MC; Gates JE; Keller SR
    Ecol Appl; 2016 Jul; 26(5):1381-1395. PubMed ID: 27755755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin.
    Rabie PA; Welch-Acosta B; Nasman K; Schumacher S; Schueller S; Gruver J
    PLoS One; 2022; 17(4):e0266500. PubMed ID: 35395032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors associated with bat mortality at wind energy facilities in the United States.
    Thompson M; Beston JA; Etterson M; Diffendorfer JE; Loss SR
    Biol Conserv; 2017; 215():241-245. PubMed ID: 31048934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing an efficient protocol for monitoring eagle fatalities at wind energy facilities.
    Hallingstad EC; Rabie PA; Telander AC; Roppe JA; Nagy LR
    PLoS One; 2018; 13(12):e0208700. PubMed ID: 30540840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collision risk of bats with small wind turbines: Worst-case scenarios near roosts, commuting and hunting structures.
    Hartmann SA; Hochradel K; Greule S; Günther F; Luedtke B; Schauer-Weisshahn H; Brinkmann R
    PLoS One; 2021; 16(6):e0253782. PubMed ID: 34170938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of the effectiveness of operational curtailment for reducing bat fatalities at terrestrial wind farms in North America.
    Adams EM; Gulka J; Williams KA
    PLoS One; 2021; 16(11):e0256382. PubMed ID: 34788295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review.
    Agudelo MS; Mabee TJ; Palmer R; Anderson R
    Heliyon; 2021 Jun; 7(6):e07251. PubMed ID: 34189305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wind energy production in forests conflicts with tree-roosting bats.
    Reusch C; Paul AA; Fritze M; Kramer-Schadt S; Voigt CC
    Curr Biol; 2023 Feb; 33(4):737-743.e3. PubMed ID: 36681078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Habitat use of bats in relation to wind turbines revealed by GPS tracking.
    Roeleke M; Blohm T; Kramer-Schadt S; Yovel Y; Voigt CC
    Sci Rep; 2016 Jul; 6():28961. PubMed ID: 27373219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing evidence that bats actively forage at wind turbines.
    Foo CF; Bennett VJ; Hale AM; Korstian JM; Schildt AJ; Williams DA
    PeerJ; 2017; 5():e3985. PubMed ID: 29114441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind turbine power and land cover effects on cumulative bat deaths.
    Moustakas A; Georgiakakis P; Kret E; Kapsalis E
    Sci Total Environ; 2023 Sep; 892():164536. PubMed ID: 37268139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.
    Beston JA; Diffendorfer JE; Loss SR; Johnson DH
    PLoS One; 2016; 11(3):e0150813. PubMed ID: 26963254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.
    New L; Bjerre E; Millsap B; Otto MC; Runge MC
    PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.
    Wellig SD; Nusslé S; Miltner D; Kohle O; Glaizot O; Braunisch V; Obrist MK; Arlettaz R
    PLoS One; 2018; 13(3):e0192493. PubMed ID: 29561851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavior of bats at wind turbines.
    Cryan PM; Gorresen PM; Hein CD; Schirmacher MR; Diehl RH; Huso MM; Hayman DT; Fricker PD; Bonaccorso FJ; Johnson DH; Heist K; Dalton DC
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15126-31. PubMed ID: 25267628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light.
    Cryan PM; Gorresen PM; Straw BR; Thao SS; DeGeorge E
    Animals (Basel); 2021 Dec; 12(1):. PubMed ID: 35011115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A standardized protocol for assessing the performance of automatic detection systems used in onshore wind power plants to reduce avian mortality.
    Ballester C; Dupont SM; Corbeau A; Chambert T; Duriez O; Besnard A
    J Environ Manage; 2024 Mar; 354():120437. PubMed ID: 38402787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird.
    Santos CD; Ramesh H; Ferraz R; Franco AMA; Wikelski M
    Sci Rep; 2022 Apr; 12(1):6441. PubMed ID: 35440704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.