BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 32857853)

  • 1. Recent advances in the nucleolar responses to DNA double-strand breaks.
    Korsholm LM; Gál Z; Nieto B; Quevedo O; Boukoura S; Lund CC; Larsen DH
    Nucleic Acids Res; 2020 Sep; 48(17):9449-9461. PubMed ID: 32857853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair.
    Korsholm LM; Gál Z; Lin L; Quevedo O; Ahmad DA; Dulina E; Luo Y; Bartek J; Larsen DH
    Nucleic Acids Res; 2019 Sep; 47(15):8019-8035. PubMed ID: 31184714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleolar responses to DNA double-strand breaks.
    Larsen DH; Stucki M
    Nucleic Acids Res; 2016 Jan; 44(2):538-44. PubMed ID: 26615196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleolar DNA Double-Strand Break Responses Underpinning rDNA Genomic Stability.
    van Sluis M; McStay B
    Trends Genet; 2019 Oct; 35(10):743-753. PubMed ID: 31353047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation.
    Mooser C; Symeonidou IE; Leimbacher PA; Ribeiro A; Shorrocks AK; Jungmichel S; Larsen SC; Knechtle K; Jasrotia A; Zurbriggen D; Jeanrenaud A; Leikauf C; Fink D; Nielsen ML; Blackford AN; Stucki M
    Nat Commun; 2020 Jan; 11(1):123. PubMed ID: 31913317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nucleolus: In Genome Maintenance and Repair.
    Tsekrekou M; Stratigi K; Chatzinikolaou G
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair.
    Marnef A; Finoux AL; Arnould C; Guillou E; Daburon V; Rocher V; Mangeat T; Mangeot PE; Ricci EP; Legube G
    Genes Dev; 2019 Sep; 33(17-18):1175-1190. PubMed ID: 31395742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage.
    van Sluis M; McStay B
    Genes Dev; 2015 Jun; 29(11):1151-63. PubMed ID: 26019174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleolar reorganization in response to rDNA damage.
    van Sluis M; McStay B
    Curr Opin Cell Biol; 2017 Jun; 46():81-86. PubMed ID: 28431265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction.
    Franek M; Kovaříková A; Bártová E; Kozubek S
    J Histochem Cytochem; 2016 Nov; 64(11):669-686. PubMed ID: 27680669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.
    Ciccia A; Huang JW; Izhar L; Sowa ME; Harper JW; Elledge SJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18631-6. PubMed ID: 25512513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nucleolus: an emerging target for cancer therapy.
    Hein N; Hannan KM; George AJ; Sanij E; Hannan RD
    Trends Mol Med; 2013 Nov; 19(11):643-54. PubMed ID: 23953479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleolus: Coordinating stress response and genomic stability.
    González-Arzola K
    Biochim Biophys Acta Gene Regul Mech; 2024 Jun; 1867(2):195029. PubMed ID: 38642633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.
    Calo E; Gu B; Bowen ME; Aryan F; Zalc A; Liang J; Flynn RA; Swigut T; Chang HY; Attardi LD; Wysocka J
    Nature; 2018 Feb; 554(7690):112-117. PubMed ID: 29364875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving fast and breaking things: Incidence and repair of DNA damage within ribosomal DNA repeats.
    Blokhina YP; Buchwalter A
    Mutat Res; 2020; 821():111715. PubMed ID: 32717383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATM Dependent Silencing Links Nucleolar Chromatin Reorganization to DNA Damage Recognition.
    Harding SM; Boiarsky JA; Greenberg RA
    Cell Rep; 2015 Oct; 13(2):251-9. PubMed ID: 26440899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DYRK1B-dependent pathway suppresses rDNA transcription in response to DNA damage.
    Dong C; An L; Yu CH; Huen MSY
    Nucleic Acids Res; 2021 Feb; 49(3):1485-1496. PubMed ID: 33469661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks.
    Kruhlak M; Crouch EE; Orlov M; Montaño C; Gorski SA; Nussenzweig A; Misteli T; Phair RD; Casellas R
    Nature; 2007 Jun; 447(7145):730-4. PubMed ID: 17554310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription.
    Becherel OJ; Gueven N; Birrell GW; Schreiber V; Suraweera A; Jakob B; Taucher-Scholz G; Lavin MF
    Hum Mol Genet; 2006 Jul; 15(14):2239-49. PubMed ID: 16777843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-directed repair of DNA double-strand breaks.
    Yang YG; Qi Y
    DNA Repair (Amst); 2015 Aug; 32():82-85. PubMed ID: 25960340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.