BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32858000)

  • 1. Metabolic rewiring in drug resistant cells exhibit higher OXPHOS and fatty acids as preferred major source to cellular energetics.
    Salunkhe S; Mishra SV; Ghorai A; Hole A; Chandrani P; Dutt A; Chilakapati M; Dutt S
    Biochim Biophys Acta Bioenerg; 2020 Dec; 1861(12):148300. PubMed ID: 32858000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.
    Suganuma K; Miwa H; Imai N; Shikami M; Gotou M; Goto M; Mizuno S; Takahashi M; Yamamoto H; Hiramatsu A; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M
    Leuk Lymphoma; 2010 Nov; 51(11):2112-9. PubMed ID: 20860495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of oxidative phosphorylation sensitizes leukemia cell lines to cytarabine.
    Yucel B; Sonmez M
    Hematology; 2018 Jul; 23(6):330-336. PubMed ID: 29139328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target.
    Lapa B; Gonçalves AC; Jorge J; Alves R; Pires AS; Abrantes AM; Coucelo M; Abrunhosa A; Botelho MF; Nascimento-Costa JM; Sarmento-Ribeiro AB
    Med Oncol; 2020 Jul; 37(8):72. PubMed ID: 32725458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
    Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE
    Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity.
    Massalha W; Markovits M; Pichinuk E; Feinstein-Rotkopf Y; Tarshish M; Mishra K; Llado V; Weil M; Escriba PV; Kakhlon O
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30602451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leptin promotes fatty acid oxidation and OXPHOS via the c-Myc/PGC-1 pathway in cancer cells.
    Liu Q; Sun Y; Fei Z; Yang Z; Duan K; Zi J; Cui Q; Yu M; Xiong W
    Acta Biochim Biophys Sin (Shanghai); 2019 Jul; 51(7):707-714. PubMed ID: 31187140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells.
    Blanquer-Rosselló MD; Hernández-López R; Roca P; Oliver J; Valle A
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):431-440. PubMed ID: 27760368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells.
    Xu Y; Gao W; Zhang Y; Wu S; Liu Y; Deng X; Xie L; Yang J; Yu H; Su J; Sun L
    Int J Oncol; 2018 Sep; 53(3):1055-1068. PubMed ID: 30015875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.
    Clara R; Langhans W; Mansouri A
    Metabolism; 2016 Mar; 65(3):8-17. PubMed ID: 26892511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysophosphatidic Acid Induces Aerobic Glycolysis, Lipogenesis, and Increased Amino Acid Uptake in BV-2 Microglia.
    Joshi L; Plastira I; Bernhart E; Reicher H; Koyani CN; Madl T; Madreiter-Sokolowski C; Koshenov Z; Graier WF; Hallström S; Sattler W
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways.
    Jia D; Lu M; Jung KH; Park JH; Yu L; Onuchic JN; Kaipparettu BA; Levine H
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3909-3918. PubMed ID: 30733294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold.
    Griessinger E; Pereira-Martins D; Nebout M; Bosc C; Saland E; Boet E; Sahal A; Chiche J; Debayle D; Fleuriot L; Pruis M; De Mas V; Vergez F; Récher C; Huls G; Sarry JE; Schuringa JJ; Peyron JF
    Cancer Res; 2023 Aug; 83(15):2461-2470. PubMed ID: 37272750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Mechanisms of Metabolism and Gene Expression of the CCRF-CEM Leukemia Cells under Glucocorticoid Treatment.
    Lambrou GI; Karakonstantakis T; Vlahopoulos S; Zaravinos A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
    Wu M; Neilson A; Swift AL; Moran R; Tamagnine J; Parslow D; Armistead S; Lemire K; Orrell J; Teich J; Chomicz S; Ferrick DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C125-36. PubMed ID: 16971499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia.
    Henkenius K; Greene BH; Barckhausen C; Hartmann R; Märken M; Kaiser T; Rehberger M; Metzelder SK; Parak WJ; Neubauer A; Brendel C; Mack E
    Leuk Res; 2017 Nov; 62():56-63. PubMed ID: 28985623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro.
    Zhong Y; Li X; Yu D; Li X; Li Y; Long Y; Yuan Y; Ji Z; Zhang M; Wen JG; Nesland JM; Suo Z
    Oncotarget; 2015 Nov; 6(35):37758-69. PubMed ID: 26413751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.
    Miwa H; Shikami M; Goto M; Mizuno S; Takahashi M; Tsunekawa-Imai N; Ishikawa T; Mizutani M; Horio T; Gotou M; Yamamoto H; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M
    Oncol Rep; 2013 May; 29(5):2053-7. PubMed ID: 23440281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.