These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32858042)

  • 1. Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels.
    Tripathi D; Prakash J; Tiwari AK; Ellahi R
    Microvasc Res; 2020 Nov; 132():104065. PubMed ID: 32858042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.
    Prakash J; Ramesh K; Tripathi D; Kumar R
    Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2020 Nov; 132():104062. PubMed ID: 32828761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects.
    Dhanapal C; Kamalakkannan J; Prakash J; Kothandapani M
    Appl Bionics Biomech; 2016; 2016():4123741. PubMed ID: 27688703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascendancy of electromagnetic force and Hall currents on blood flow carrying Cu-Au NPs in a non-uniform endoscopic annulus having wall slip.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Nov; 138():104191. PubMed ID: 34097918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model.
    Narla VK; Tripathi D
    Microvasc Res; 2019 May; 123():25-34. PubMed ID: 30543817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2023 Jan; 145():104435. PubMed ID: 36115732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
    Tripathi D; Yadav A; Anwar Bég O; Kumar R
    Microvasc Res; 2018 May; 117():28-36. PubMed ID: 29305878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu and Cu-SWCNT Nanoparticles' Suspension in Pulsatile Casson Fluid Flow via Darcy-Forchheimer Porous Channel with Compliant Walls: A Prospective Model for Blood Flow in Stenosed Arteries.
    Ali A; Bukhari Z; Umar M; Ismail MA; Abbas Z
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow.
    Tripathi D; Borode A; Jhorar R; Bég OA; Tiwari AK
    Microvasc Res; 2017 Nov; 114():65-83. PubMed ID: 28619665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.
    Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K
    J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of Hall currents on hybrid nano-blood flow through an inclined artery having mild stenosis: Homotopy perturbation approach.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Sep; 137():104192. PubMed ID: 34081994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropolar gold blood nanofluid flow and radiative heat transfer between permeable channels.
    Shah Z; Khan A; Khan W; Kamran Alam M; Islam S; Kumam P; Thounthong P
    Comput Methods Programs Biomed; 2020 Apr; 186():105197. PubMed ID: 31805484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: NON-Newtonian pharmacodynamic simulation.
    Vasu B; Dubey A; Bég OA; Gorla RSR
    Comput Biol Med; 2020 Nov; 126():104025. PubMed ID: 33074112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects.
    Tripathi J; Vasu B; Bég OA; Gorla RSR; Kameswaran PK
    Comput Biol Med; 2021 Dec; 139():105009. PubMed ID: 34775156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal micropolar and couple stresses effects on peristaltic flow of biviscosity nanofluid through a porous medium.
    Ismael AM; Eldabe NT; Abou Zeid MY; El Shabouri SM
    Sci Rep; 2022 Sep; 12(1):16180. PubMed ID: 36171438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nonlinear thermal radiation on the efficiency of building integrated photovoltaic systems with nanofluid cooling.
    Badi N; Laatar AH; Ben Mabrouk A; Alsharari AM; Alghamdi SA; Albalawi H
    PLoS One; 2024; 19(6):e0304685. PubMed ID: 38900736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Gold Nanoparticle Transport during MHD Electroosmotic Flow in a Peristaltic Micro-Channel for Biomedical Treatment.
    Nuwairan MA; Souayeh B
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.