These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 32858164)

  • 1. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting goals of care conversations in clinical notes with active learning.
    Weissenbacher D; Courtright K; Rawal S; Crane-Droesch A; O'Connor K; Kuhl N; Merlino C; Foxwell A; Haines L; Puhl J; Gonzalez-Hernandez G
    J Biomed Inform; 2024 Mar; 151():104618. PubMed ID: 38431151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial.
    Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA
    J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Language Processing to Assess End-of-Life Quality Indicators in Cancer Patients Receiving Palliative Surgery.
    Lindvall C; Lilley EJ; Zupanc SN; Chien I; Udelsman BV; Walling A; Cooper Z; Tulsky JA
    J Palliat Med; 2019 Feb; 22(2):183-187. PubMed ID: 30328764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding Important Terms for Patients in Their Electronic Health Records: A Learning-to-Rank Approach Using Expert Annotations.
    Chen J; Zheng J; Yu H
    JMIR Med Inform; 2016 Nov; 4(4):e40. PubMed ID: 27903489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a Natural Language Processing Approach to Identify Social Determinants of Health in Electronic Health Records in a Diverse Community Cohort.
    Rouillard CJ; Nasser MA; Hu H; Roblin DW
    Med Care; 2022 Mar; 60(3):248-255. PubMed ID: 34984989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.