These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 32858175)
1. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Identification and Expression Profiling of 2OGD Superfamily Genes from Three Jiang D; Li G; Chen G; Lei J; Cao B; Chen C Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573381 [TBL] [Abstract][Full Text] [Related]
3. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
5. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza. Xu Z; Song J J Exp Bot; 2017 Apr; 68(9):2299-2308. PubMed ID: 28398557 [TBL] [Abstract][Full Text] [Related]
6. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. Wu Y; Zhou Z; Dong C; Chen J; Ding J; Zhang X; Mu C; Chen Y; Li X; Li H; Han Y; Wang R; Sun X; Li J; Dai X; Song W; Chen W; Wu J BMC Genomics; 2020 May; 21(1):357. PubMed ID: 32398006 [TBL] [Abstract][Full Text] [Related]
7. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Kawai Y; Ono E; Mizutani M Plant J; 2014 Apr; 78(2):328-43. PubMed ID: 24547750 [TBL] [Abstract][Full Text] [Related]
8. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Gaikpa DS; Miedaner T Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot. Zhou Z; Cao Y; Li T; Wang X; Chen J; He H; Yao W; Wu J; Zhang H Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):241-255. PubMed ID: 32531477 [TBL] [Abstract][Full Text] [Related]
10. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Ma P; Liu E; Zhang Z; Li T; Zhou Z; Yao W; Chen J; Wu J; Xu Y; Zhang H Plant Biotechnol J; 2023 Sep; 21(9):1812-1826. PubMed ID: 37293701 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. de Jong G; Pamplona AKA; Von Pinho RG; Balestre M Genomics; 2018 Sep; 110(5):291-303. PubMed ID: 29223691 [TBL] [Abstract][Full Text] [Related]
12. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Christensen SA; Nemchenko A; Park YS; Borrego E; Huang PC; Schmelz EA; Kunze S; Feussner I; Yalpani N; Meeley R; Kolomiets MV Mol Plant Microbe Interact; 2014 Nov; 27(11):1263-76. PubMed ID: 25122482 [TBL] [Abstract][Full Text] [Related]
13. A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Stagnati L; Lanubile A; Samayoa LF; Bragalanti M; Giorni P; Busconi M; Holland JB; Marocco A G3 (Bethesda); 2019 Feb; 9(2):571-579. PubMed ID: 30567831 [No Abstract] [Full Text] [Related]
14. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
15. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Yao L; Li Y; Ma C; Tong L; Du F; Xu M J Integr Plant Biol; 2020 Oct; 62(10):1535-1551. PubMed ID: 31961059 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. Ma Y; Chhapekar SS; Lu L; Oh S; Singh S; Kim CS; Kim S; Choi GJ; Lim YP; Choi SR BMC Plant Biol; 2021 Jan; 21(1):47. PubMed ID: 33461498 [TBL] [Abstract][Full Text] [Related]
17. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. Mu C; Gao J; Zhou Z; Wang Z; Sun X; Zhang X; Dong H; Han Y; Li X; Wu Y; Song Y; Ma P; Dong C; Chen J; Wu J Theor Appl Genet; 2019 Apr; 132(4):1049-1059. PubMed ID: 30535634 [TBL] [Abstract][Full Text] [Related]
18. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Ju M; Zhou Z; Mu C; Zhang X; Gao J; Liang Y; Chen J; Wu Y; Li X; Wang S; Wen J; Yang L; Wu J Sci Rep; 2017 Apr; 7():46446. PubMed ID: 28422143 [TBL] [Abstract][Full Text] [Related]
19. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. Yuan G; Shi J; Zeng C; Shi H; Yang Y; Zhang C; Ma T; Wu M; Jia Z; Du J; Zou C; Ma L; Pan G; Shen Y BMC Genomics; 2024 Jul; 25(1):733. PubMed ID: 39080512 [TBL] [Abstract][Full Text] [Related]
20. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence. Yamamura Y; Shim WB Microbiology (Reading); 2008 Jun; 154(Pt 6):1637-1645. PubMed ID: 18524918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]