These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 32858254)
81. M1 to M2 induction in macrophages using a retinoic acid-releasing mesenchymal stem cell scaffold. Assani KD; Nosoudi N; Ramirez-Vick JE; Singh SP Biomed Mater Eng; 2023; 34(2):143-157. PubMed ID: 35871316 [TBL] [Abstract][Full Text] [Related]
82. Vascular Endothelial Growth Factor Receptor Type 1 Signaling Prevents Delayed Wound Healing in Diabetes by Attenuating the Production of IL-1β by Recruited Macrophages. Okizaki S; Ito Y; Hosono K; Oba K; Ohkubo H; Kojo K; Nishizawa N; Shibuya M; Shichiri M; Majima M Am J Pathol; 2016 Jun; 186(6):1481-98. PubMed ID: 27085138 [TBL] [Abstract][Full Text] [Related]
83. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. He D; Kou X; Luo Q; Yang R; Liu D; Wang X; Song Y; Cao H; Zeng M; Gan Y; Zhou Y J Dent Res; 2015 Jan; 94(1):129-39. PubMed ID: 25344334 [TBL] [Abstract][Full Text] [Related]
84. Alveolar bone healing in mice genetically selected in the maximum (AIRmax) or minimum (AIRmin) inflammatory reaction. Colavite PM; Vieira AE; Palanch Repeke CE; de Araujo Linhari RP; De Andrade RGCS; Borrego A; De Franco M; Trombone APF; Garlet GP Cytokine; 2019 Feb; 114():47-60. PubMed ID: 30584949 [TBL] [Abstract][Full Text] [Related]
86. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Kong Q; Gao S; Li P; Sun H; Zhang Z; Yu X; Deng F; Wang T Int Immunopharmacol; 2024 Mar; 130():111766. PubMed ID: 38452411 [TBL] [Abstract][Full Text] [Related]
87. FOXM1 accelerates wound healing in diabetic foot ulcer by inducing M2 macrophage polarization through a mechanism involving SEMA3C/NRP2/Hedgehog signaling. Yang Y; Zhang B; Yang Y; Peng B; Ye R Diabetes Res Clin Pract; 2022 Feb; 184():109121. PubMed ID: 34742786 [TBL] [Abstract][Full Text] [Related]
88. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch. Di G; Du X; Qi X; Zhao X; Duan H; Li S; Xie L; Zhou Q Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4344–4354. PubMed ID: 28810264 [TBL] [Abstract][Full Text] [Related]
89. M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Roma-Lavisse C; Tagzirt M; Zawadzki C; Lorenzi R; Vincentelli A; Haulon S; Juthier F; Rauch A; Corseaux D; Staels B; Jude B; Van Belle E; Susen S; Chinetti-Gbaguidi G; Dupont A Diab Vasc Dis Res; 2015 Jul; 12(4):279-89. PubMed ID: 25966737 [TBL] [Abstract][Full Text] [Related]
91. Regulatory effects of dermal papillary pluripotent stem cells on polarization of macrophages from M1 to M2 phenotype in vitro. Li M; Xu J; Mei X; Chi G; Li L; Song Y; He X; Li Y Transpl Immunol; 2019 Feb; 52():57-67. PubMed ID: 30458295 [TBL] [Abstract][Full Text] [Related]
92. Essential Role of Lysophosphatidylcholine Acyltransferase 3 in the Induction of Macrophage Polarization in PMA-Treated U937 Cells. Taniguchi K; Hikiji H; Okinaga T; Hashidate-Yoshida T; Shindou H; Ariyoshi W; Shimizu T; Tominaga K; Nishihara T J Cell Biochem; 2015 Dec; 116(12):2840-8. PubMed ID: 25994902 [TBL] [Abstract][Full Text] [Related]
93. Glibenclamide Reduces Primary Human Monocyte Functions Against Tuberculosis Infection by Enhancing M2 Polarization. Kewcharoenwong C; Prabowo SA; Bancroft GJ; Fletcher HA; Lertmemongkolchai G Front Immunol; 2018; 9():2109. PubMed ID: 30283449 [TBL] [Abstract][Full Text] [Related]
94. An In Vitro Model of Angiogenesis during Wound Healing Provides Insights into the Complex Role of Cells and Factors in the Inflammatory and Proliferation Phase. Beyer S; Koch M; Lee YH; Jung F; Blocki A Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30257508 [TBL] [Abstract][Full Text] [Related]
95. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Zhang F; Wang H; Wang X; Jiang G; Liu H; Zhang G; Wang H; Fang R; Bu X; Cai S; Du J Oncotarget; 2016 Aug; 7(32):52294-52306. PubMed ID: 27418133 [TBL] [Abstract][Full Text] [Related]
96. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051 [TBL] [Abstract][Full Text] [Related]
97. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Oishi S; Takano R; Tamura S; Tani S; Iwaizumi M; Hamaya Y; Takagaki K; Nagata T; Seto S; Horii T; Osawa S; Furuta T; Miyajima H; Sugimoto K Immunology; 2016 Nov; 149(3):320-328. PubMed ID: 27421990 [TBL] [Abstract][Full Text] [Related]
98. Aligned electrospun poly(L-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways. Xie J; Wu X; Zheng S; Lin K; Su J J Nanobiotechnology; 2022 Jul; 20(1):342. PubMed ID: 35883095 [TBL] [Abstract][Full Text] [Related]
100. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Schlundt C; Fischer H; Bucher CH; Rendenbach C; Duda GN; Schmidt-Bleek K Acta Biomater; 2021 Oct; 133():46-57. PubMed ID: 33974949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]