BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32858296)

  • 1. Optimizing granulation of a sulfide-based autotrophic denitrification (SOAD) sludge: Reactor configuration and mixing mode.
    Guo G; Hao T
    Sci Total Environ; 2021 Jan; 750():141626. PubMed ID: 32858296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activated Sludge Mineralization and Solutions in the Process of Zero-Valent Iron Autotrophic Denitrification].
    Zhang NB; Li X; Huang Y; Zhang WJ
    Huan Jing Ke Xue; 2017 Sep; 38(9):3793-3800. PubMed ID: 29965261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor.
    Cui YX; Biswal BK; van Loosdrecht MCM; Chen GH; Wu D
    Water Res; 2019 Dec; 166():115038. PubMed ID: 31505308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.
    Yang W; Zhao Q; Lu H; Ding Z; Meng L; Chen GH
    Water Res; 2016 Mar; 90():176-184. PubMed ID: 26734778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system.
    Qian J; Bai L; Zhang M; Chen L; Yan X; Sun R; Zhang M; Chen GH; Wu D
    Water Res; 2021 Feb; 190():116716. PubMed ID: 33290906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Lu H; Chen G
    Water Res; 2016 Oct; 103():444-452. PubMed ID: 27498252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.
    Wei Y; Dai J; Mackey HR; Chen GH
    Water Res; 2017 Oct; 122():226-233. PubMed ID: 28601790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.
    Beliavski M; Meerovich I; Tarre S; Green M
    Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification.
    Cui YX; Wu D; Mackey HR; Chui HK; Chen GH
    Water Sci Technol; 2018 Feb; 77(3-4):1027-1034. PubMed ID: 29488966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evaluation of Advanced Nitrogen Removal from Coking Wastewater Using Sulfide Iron-containing Sludge as a Denitrification Electron Donor].
    Fu BB; Pan JX; Ma JD; Wang F; Wu HZ; Wei CH
    Huan Jing Ke Xue; 2018 Jul; 39(7):3262-3270. PubMed ID: 29962151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial activity in a combined UASB-activated sludge reactor system.
    Huang JS; Wu CS; Chen CM
    Chemosphere; 2005 Nov; 61(7):1032-41. PubMed ID: 16257323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Element Sulfur Particle Size and Type of the Reactor on Start-up of Sulfur-based Autotrophic Denitrification Reactor].
    Ma H; Zhu Q; Zhu L; Li X; Huang Y; Wei FK; Yang PB
    Huan Jing Ke Xue; 2016 Jun; 37(6):2235-2242. PubMed ID: 29964891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Start-up of granule-based denitrifying reactors with multiple magnesium supplementation strategies.
    Chen H; He LL; Liu AN; Guo Q; Zhang ZZ; Jin RC
    J Environ Manage; 2015 May; 155():204-11. PubMed ID: 25837295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor.
    Can-Dogan E; Turker M; Dagasan L; Arslan A
    Water Sci Technol; 2010; 62(10):2286-93. PubMed ID: 21076214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge.
    Tian T; Zhou K; Xuan L; Zhang JX; Li YS; Liu DF; Yu HQ
    Water Res; 2020 Mar; 170():115300. PubMed ID: 31756614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification.
    Namburath M; Papirio S; Moscariello C; Di Costanzo N; Pirozzi F; Alappat BJ; Sreekrishnan TR
    J Environ Manage; 2020 Dec; 275():111301. PubMed ID: 32866922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.