These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32858296)

  • 1. Optimizing granulation of a sulfide-based autotrophic denitrification (SOAD) sludge: Reactor configuration and mixing mode.
    Guo G; Hao T
    Sci Total Environ; 2021 Jan; 750():141626. PubMed ID: 32858296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activated Sludge Mineralization and Solutions in the Process of Zero-Valent Iron Autotrophic Denitrification].
    Zhang NB; Li X; Huang Y; Zhang WJ
    Huan Jing Ke Xue; 2017 Sep; 38(9):3793-3800. PubMed ID: 29965261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor.
    Cui YX; Biswal BK; van Loosdrecht MCM; Chen GH; Wu D
    Water Res; 2019 Dec; 166():115038. PubMed ID: 31505308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.
    Yang W; Zhao Q; Lu H; Ding Z; Meng L; Chen GH
    Water Res; 2016 Mar; 90():176-184. PubMed ID: 26734778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system.
    Qian J; Bai L; Zhang M; Chen L; Yan X; Sun R; Zhang M; Chen GH; Wu D
    Water Res; 2021 Feb; 190():116716. PubMed ID: 33290906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Lu H; Chen G
    Water Res; 2016 Oct; 103():444-452. PubMed ID: 27498252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.
    Wei Y; Dai J; Mackey HR; Chen GH
    Water Res; 2017 Oct; 122():226-233. PubMed ID: 28601790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.
    Beliavski M; Meerovich I; Tarre S; Green M
    Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification.
    Cui YX; Wu D; Mackey HR; Chui HK; Chen GH
    Water Sci Technol; 2018 Feb; 77(3-4):1027-1034. PubMed ID: 29488966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evaluation of Advanced Nitrogen Removal from Coking Wastewater Using Sulfide Iron-containing Sludge as a Denitrification Electron Donor].
    Fu BB; Pan JX; Ma JD; Wang F; Wu HZ; Wei CH
    Huan Jing Ke Xue; 2018 Jul; 39(7):3262-3270. PubMed ID: 29962151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial activity in a combined UASB-activated sludge reactor system.
    Huang JS; Wu CS; Chen CM
    Chemosphere; 2005 Nov; 61(7):1032-41. PubMed ID: 16257323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Element Sulfur Particle Size and Type of the Reactor on Start-up of Sulfur-based Autotrophic Denitrification Reactor].
    Ma H; Zhu Q; Zhu L; Li X; Huang Y; Wei FK; Yang PB
    Huan Jing Ke Xue; 2016 Jun; 37(6):2235-2242. PubMed ID: 29964891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Start-up of granule-based denitrifying reactors with multiple magnesium supplementation strategies.
    Chen H; He LL; Liu AN; Guo Q; Zhang ZZ; Jin RC
    J Environ Manage; 2015 May; 155():204-11. PubMed ID: 25837295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor.
    Can-Dogan E; Turker M; Dagasan L; Arslan A
    Water Sci Technol; 2010; 62(10):2286-93. PubMed ID: 21076214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge.
    Tian T; Zhou K; Xuan L; Zhang JX; Li YS; Liu DF; Yu HQ
    Water Res; 2020 Mar; 170():115300. PubMed ID: 31756614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification.
    Namburath M; Papirio S; Moscariello C; Di Costanzo N; Pirozzi F; Alappat BJ; Sreekrishnan TR
    J Environ Manage; 2020 Dec; 275():111301. PubMed ID: 32866922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.