These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32858388)

  • 1. Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine.
    Bartlett RD; Eleftheriadou D; Evans R; Choi D; Phillips JB
    Biomaterials; 2020 Nov; 258():120303. PubMed ID: 32858388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord.
    Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD
    Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation.
    Bartlett RD; Choi D; Phillips JB
    Regen Med; 2016 Oct; 11(7):659-73. PubMed ID: 27592549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in mechanical properties of the adult rat spinal cord after injury.
    Jin C; Zhu R; Wang ZW; Li Y; Ni HF; Xu ML; Zheng LD; Cao YT; Yang YT; Xu W; Wang JJ; Xie N; Cheng LM
    Acta Biomater; 2023 Jan; 155():436-448. PubMed ID: 36435440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine.
    Jensen G; Holloway JL; Stabenfeldt SE
    Cells; 2020 Sep; 9(9):. PubMed ID: 32957463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury.
    Altinova H; Hammes S; Palm M; Achenbach P; Gerardo-Nava J; Deumens R; Führmann T; van Neerven SGA; Hermans E; Weis J; Brook GA
    Biomed Mater; 2020 Feb; 15(1):015012. PubMed ID: 31796648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.
    Kubinová Š; Horák D; Hejčl A; Plichta Z; Kotek J; Proks V; Forostyak S; Syková E
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1298-309. PubMed ID: 23401421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application of Biomaterials in Spinal Cord Injury.
    Feng C; Deng L; Yong YY; Wu JM; Qin DL; Yu L; Zhou XG; Wu AG
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels in spinal cord injury repair strategies.
    Perale G; Rossi F; Sundstrom E; Bacchiega S; Masi M; Forloni G; Veglianese P
    ACS Chem Neurosci; 2011 Jul; 2(7):336-45. PubMed ID: 22816020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies.
    Li JJ; Liu H; Zhu Y; Yan L; Liu R; Wang G; Wang B; Zhao B
    Tissue Eng Part B Rev; 2022 Feb; 28(1):79-100. PubMed ID: 33267667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerative rehabilitation with conductive biomaterials for spinal cord injury.
    Kiyotake EA; Martin MD; Detamore MS
    Acta Biomater; 2022 Feb; 139():43-64. PubMed ID: 33326879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Biomaterials for Tissue Regeneration.
    Wu DT; Jeffreys N; Diba M; Mooney DJ
    Tissue Eng Part C Methods; 2022 Jul; 28(7):289-300. PubMed ID: 35442107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable hydrogel materials for spinal cord regeneration: a review.
    Macaya D; Spector M
    Biomed Mater; 2012 Feb; 7(1):012001. PubMed ID: 22241481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels.
    Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N
    Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine.
    Salthouse D; Novakovic K; Hilkens CMU; Ferreira AM
    Acta Biomater; 2023 Jan; 155():1-18. PubMed ID: 36356914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building biocompatible hydrogels for tissue engineering of the brain and spinal cord.
    Aurand ER; Wagner J; Lanning C; Bjugstad KB
    J Funct Biomater; 2012 Nov; 3(4):839-63. PubMed ID: 24955749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies.
    Woerly S; Petrov P; Syková E; Roitbak T; Simonová Z; Harvey AR
    Tissue Eng; 1999 Oct; 5(5):467-88. PubMed ID: 10586102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.