These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32858765)

  • 1. Adaptive differentiation of growth, energetics and behaviour between piscivore and insectivore juvenile rainbow trout along the Pace-of-Life continuum.
    Monnet G; Rosenfeld JS; Richards JG
    J Anim Ecol; 2020 Nov; 89(11):2717-2732. PubMed ID: 32858765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioural variation between piscivore and insectivore rainbow trout Oncorhynchus mykiss.
    Monnet G; Rosenfeld JS; Richards JG
    J Fish Biol; 2021 Sep; 99(3):955-963. PubMed ID: 33969488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.
    Van Leeuwen TE; Rosenfeld JS; Richards JG
    J Anim Ecol; 2011 Sep; 80(5):1012-23. PubMed ID: 21466553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence in digestive and metabolic strategies matches habitat differentiation in juvenile salmonids.
    Monnet G; Rosenfeld JS; Richards JG
    Ecol Evol; 2022 Sep; 12(9):e9280. PubMed ID: 36110883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss).
    Grummer JA; Whitlock MC; Schulte PM; Taylor EB
    BMC Ecol Evol; 2021 Apr; 21(1):63. PubMed ID: 33888062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids.
    Rosenfeld J; Van Leeuwen T; Richards J; Allen D
    J Anim Ecol; 2015 Jan; 84(1):4-20. PubMed ID: 24930825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetic consequences of habitat structure for forest stream salmonids.
    Naman SM; Rosenfeld JS; Kiffney PM; Richardson JS
    J Anim Ecol; 2018 Sep; 87(5):1383-1394. PubMed ID: 29737519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance.
    Baxter CV; Fausch KD; Murakami M; Chapman PL
    Oecologia; 2007 Aug; 153(2):461-70. PubMed ID: 17530293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing personality-pace-of-life associations via artificial selection: insights from selected lines of rainbow trout on the context-dependence of correlations.
    Biro PA
    Biol Lett; 2024 Jun; 20(6):20240181. PubMed ID: 38949039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life at the top: Lake ecotype influences the foraging pattern, metabolic costs and life history of an apex fish predator.
    Cruz-Font L; Shuter BJ; Blanchfield PJ; Minns CK; Rennie MD
    J Anim Ecol; 2019 May; 88(5):702-716. PubMed ID: 30712263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout.
    Arostegui MC; Quinn TP; Seeb LW; Seeb JE; McKinney GJ
    Mol Ecol; 2019 Mar; 28(6):1412-1427. PubMed ID: 30714254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse.
    Furey NB; Hinch SG; Mesa MG; Beauchamp DA
    J Anim Ecol; 2016 Sep; 85(5):1307-17. PubMed ID: 27457279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origins of ecotypic variation of rainbow trout: a test of environmental vs. genetically based differences in morphology.
    Keeley ER; Parkinson EA; Taylor EB
    J Evol Biol; 2007 Mar; 20(2):725-36. PubMed ID: 17305838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early life-history consequences of growth-hormone transgenesis in rainbow trout reared in stream ecosystem mesocosms.
    Crossin GT; Sundström LF; Vandersteen WE; Devlin RH
    PLoS One; 2015; 10(3):e0120173. PubMed ID: 25807001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine.
    Pettem CM; Briens JM; Janz DM; Weber LP
    Aquat Toxicol; 2018 May; 198():175-189. PubMed ID: 29550715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator species related adaptive changes in larval growth and digestive physiology.
    Jiang B; Johansson F; Stoks R; Mauersberger R; Mikolajewski DJ
    J Insect Physiol; 2019 Apr; 114():23-29. PubMed ID: 30716335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and ration effects on components of the IGF system and growth performance of rainbow trout (Oncorhynchus mykiss) during the transition from late stage embryos to early stage juveniles.
    Li M; Leatherland J
    Gen Comp Endocrinol; 2008 Feb; 155(3):668-79. PubMed ID: 17937932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.
    Rosewarne PJ; Wilson JM; Svendsen JC
    J Fish Biol; 2016 Jan; 88(1):265-83. PubMed ID: 26768978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates.
    Biro PA; Abrahams MV; Post JR; Parkinson EA
    J Anim Ecol; 2006 Sep; 75(5):1165-71. PubMed ID: 16922852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic scope explains individual variation in feeding capacity.
    Auer SK; Salin K; Anderson GJ; Metcalfe NB
    Biol Lett; 2015 Nov; 11(11):. PubMed ID: 26556902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.