These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32858919)

  • 1. Recent Advances in ASIC Development for Enhanced Performance M-Sequence UWB Systems.
    Galajda P; Pecovsky M; Sokol M; Kmec M; Kocur D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and Implementation of Controlled Semiconductor Switch for Ultra-Wideband Radar Sensor Applications.
    Jurik P; Sokol M; Galajda P; Drutarovsky M
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of AD Converters in 0.35 µm SiGe BiCMOS Technology for Ultra-Wideband M-Sequence Radar Sensors.
    Sokol M; Galajda P; Saliga J; Jurik P
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Realization of Ultra-Wideband Differential Amplifiers for M-Sequence Radar Applications.
    Sokol M; Galajda P; Jurik P
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wi-PoS: A Low-Cost, Open Source Ultra-Wideband (UWB) Hardware Platform with Long Range Sub-GHz Backbone.
    Van Herbruggen B; Jooris B; Rossey J; Ridolfi M; Macoir N; Van den Brande Q; Lemey S; De Poorter E
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method for Breath Detection via Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB) Radars Based on Operational Bandwidth Segmentation.
    Lv H; Jiao T; Zhang Y; Liang F; Qi F; Wang J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver.
    Khan F; Ghaffar A; Khan N; Cho SH
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32349382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs.
    Wang D; Yoo S; Cho SH
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Overview of Human Localization and Vital Sign Signal Measurement Using Handheld IR-UWB Through-Wall Radar.
    Yang D; Zhu Z; Zhang J; Liang B
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.
    Kocur D; Svecová M; Rovňáková J
    Sensors (Basel); 2013 Sep; 13(9):11969-97. PubMed ID: 24021968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring.
    Rahman M; NaghshvarianJahromi M; Mirjavadi SS; Hamouda AM
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Evaluation of UWB Indoor Positioning for Indoor Track Cycling.
    Minne K; Macoir N; Rossey J; Brande QVD; Lemey S; Hoebeke J; Poorter E
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development and Progress of the UWB Physical Layer.
    Lv Z; Zhang X; Chen D; Li D; Wang X; Zhao T; Yang Y; Zhao Y; Zhang X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Various Technologies on the Quality of Ultra-Wideband Antenna on a Polymeric Substrate.
    Lukacs P; Pietrikova A; Vehec I; Provazek P
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting.
    Sakr M; Masiero A; El-Sheimy N
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1-Tx/5-Rx Through-Wall UWB Switched-Antenna-Array Radar for Detecting Stationary Humans.
    Rittiplang A; Phasukkit P
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless Body Area Networks: UWB Wearable Textile Antenna for Telemedicine and Mobile Health Systems.
    Yadav A; Kumar Singh V; Kumar Bhoi A; Marques G; Garcia-Zapirain B; de la Torre Díez I
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.
    Zhang S; Jensen TL; Franek O; Eggers PC; Olesen K; Byskov C; Pedersen GF
    Sensors (Basel); 2015 Aug; 15(8):19768-82. PubMed ID: 26274964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for UWB-based communication and location tracking systems for wireless sensor networks.
    Chóliz J; Hernández A; Valdovinos A
    Sensors (Basel); 2011; 11(9):9045-68. PubMed ID: 22164120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IR-UWB Pulse Generation Using FPGA Scheme for through Obstacle Human Detection.
    Tantiparimongkol L; Phasukkit P
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.