BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32858962)

  • 1. Lanthanide Luminescence in Visible-Light-Promoted Photochemical Reactions.
    Barraza R; Allen MJ
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32858962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays.
    Tropiano M; Kenwright AM; Faulkner S
    Chemistry; 2015 Apr; 21(15):5697-9. PubMed ID: 25754928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study.
    Lumpe H; Pol A; Op den Camp HJM; Daumann LJ
    Dalton Trans; 2018 Aug; 47(31):10463-10472. PubMed ID: 30020281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Development of Lanthanide Complexes for Biomedical Applications.
    Wang M; Kitagawa Y; Hasegawa Y
    Chem Asian J; 2024 Apr; 19(7):e202400038. PubMed ID: 38348520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Amine-Containing Ligands That Are Necessary for Visible-Light-Promoted Catalysis with Divalent Europium.
    Barraza R; Sertage AG; Kajjam AB; Ward CL; Lutter JC; Schlegel HB; Allen MJ
    Inorg Chem; 2022 Dec; 61(49):19649-19657. PubMed ID: 36417708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic measurements of aqueous lanthanide triflate-catalyzed reactions using luminescence decay.
    Dissanayake P; Allen MJ
    J Am Chem Soc; 2009 May; 131(18):6342-3. PubMed ID: 19385628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative lanthanide complexes: Shaping the future of cancer/ tumor chemotherapy.
    Patyal M; Kaur K; Bala N; Gupta N; Malik AK
    J Trace Elem Med Biol; 2023 Dec; 80():127277. PubMed ID: 37572546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile Para-Substituted Pyridine Lanthanide Coordination Complexes Allow Late Stage Tailoring of Complex Function.
    Starck M; Fradgley JD; De Rosa DF; Batsanov AS; Papa M; Taylor MJ; Lovett JE; Lutter JC; Allen MJ; Parker D
    Chemistry; 2021 Dec; 27(71):17921-17927. PubMed ID: 34705302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting impact of coordination polyhedra and site symmetry on the electronic energy levels in nine-coordinated Eu(III) and Sm(III) crystals structures determined from single crystal luminescence spectra.
    Mortensen SS; Nielsen VRM; Sørensen TJ
    Dalton Trans; 2024 Jun; 53(24):10079-10092. PubMed ID: 38712555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Humidity-Driven Transformation of a Bimetallic {EuCo} Molecular Material: Structural, Sorption, and Photoluminescence Studies.
    Zakrzewski JJ; Heczko M; Jankowski R; Chorazy S
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies.
    Koo B; Yoo H; Choi HJ; Kim M; Kim C; Kim KT
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for photostable proximity bioassays using lanthanides.
    Haushalter JP; Faris GW
    Appl Opt; 2007 Apr; 46(10):1918-23. PubMed ID: 17356638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing Chain Processes in Visible Light Photoredox Catalysis.
    Cismesia MA; Yoon TP
    Chem Sci; 2015 Oct; 6(10):5426-5434. PubMed ID: 26668708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis.
    Jenks TC; Bailey MD; Hovey JL; Fernando S; Basnayake G; Cross ME; Li W; Allen MJ
    Chem Sci; 2018 Feb; 9(5):1273-1278. PubMed ID: 29675173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Multiuse Photoreactor To Enable Visible-Light Photocatalytic Chemical Transformations and Labeling in Live Cells.
    Bissonnette NB; Ryu KA; Reyes-Robles T; Wilhelm S; Tomlinson JH; Crotty KA; Hett EC; Roberts LR; Hazuda DJ; Jared Willis M; Oslund RC; Fadeyi OO
    Chembiochem; 2020 Dec; 21(24):3555-3562. PubMed ID: 32749732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-light photoredox catalysis in flow.
    Tucker JW; Zhang Y; Jamison TF; Stephenson CR
    Angew Chem Int Ed Engl; 2012 Apr; 51(17):4144-7. PubMed ID: 22431004
    [No Abstract]   [Full Text] [Related]  

  • 17. Cu(II) salts as terminal oxidants in visible-light photochemical oxidation reactions.
    Lutovsky GA; Yoon TP
    Org Biomol Chem; 2023 Dec; 22(1):25-36. PubMed ID: 38047405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in heterocycle synthesis through photochemical carbene transfer reactions.
    Xie ZY; Xuan J
    Chem Commun (Camb); 2024 Feb; 60(16):2125-2136. PubMed ID: 38284428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spotlight on Zinc: Exploring the Visible Light Responsiveness of Zinc Complexes.
    Wada Y; Sunada Y
    Chempluschem; 2024 Jun; ():e202400306. PubMed ID: 38858170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical Action Plots Reveal the Fundamental Mismatch Between Absorptivity and Photochemical Reactivity.
    Walden SL; Carroll JA; Unterreiner AN; Barner-Kowollik C
    Adv Sci (Weinh); 2024 Jan; 11(3):e2306014. PubMed ID: 37937391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.