These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 32859093)

  • 1. Solution-Blown Aligned Nanofiber Yarn and Its Application in Yarn-Shaped Supercapacitor.
    Yang J; Mao Z; Zheng R; Liu H; Shi L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun Conductive Nanofiber Yarn for a Wearable Yarn Supercapacitor with High Volumetric Energy Density.
    Sun X; He J; Qiang R; Nan N; You X; Zhou Y; Shao W; Liu F; Liu R
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerated silk protein based hybrid film electrode with large area specific capacitance, high flexibility and light weight towards high-performance wearable energy storage.
    Song P; Li C; Yao X; Zhang D; Zhao N; Zhang Y; Xu K; Chen X; Liu Q
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1793-1802. PubMed ID: 37683407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fast Response Ammonia Sensor Based on Coaxial PPy-PAN Nanofiber Yarn.
    Liu P; Wu S; Zhang Y; Zhang H; Qin X
    Nanomaterials (Basel); 2016 Jun; 6(7):. PubMed ID: 28335248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible quasi-solid-state supercapacitors for anti-freezing power sources based on polypyrrole@cation-grafted bacterial cellulose.
    Zheng W; Fan L; Meng Z; Zhou J; Ye D; Xu W; Xu J
    Carbohydr Polym; 2024 Jan; 324():121502. PubMed ID: 37985090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible, ultrathin and integrated nanopaper supercapacitor based on cationic bacterial cellulose.
    Zheng W; Fan L; Zhou J; Meng Z; Ye D; Xu J
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128497. PubMed ID: 38035966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-styrenesulfonate) with Different Molecular Weights of Poly(4-styrenesulfonate).
    Han H; Lee JS; Cho S
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag/MnO
    Kim JH; Choi C; Lee JM; de Andrade MJ; Baughman RH; Kim SJ
    Sci Rep; 2018 Sep; 8(1):13309. PubMed ID: 30190602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High energy density flexible Zn-ion hybrid supercapacitors with conductive cotton fabric constructed by rGO/CNT/PPy nanocomposite.
    Li C; Hao H; Liang J; Zhao B; Guo Z; Liu G; Li W
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37797599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Energy Density in All-in-One Device Integrating Si Solar Cell and Supercapacitor Using [BMIm]Cl/PVA Gel Electrolyte.
    Lee C; Subiyanto I; Byun S; Han SO; Cho CH; Kim H
    ACS Omega; 2024 Feb; 9(6):7255-7261. PubMed ID: 38371843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Yarn-Based One-Dimensional Supercapacitors.
    Han D; Kim M; Lee S; Choi C
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex Situ Fabrication of Polypyrrole-Coated Core-Shell Nanoparticles for High-Performance Coin Cell Supercapacitor.
    Han H; Cho S
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30223476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable anti-biofouling biosupercapacitor with high energy performance.
    Park T; Lee DY; Ahn BJ; Kim M; Bok J; Kang JS; Lee JM; Choi C; Jang Y
    Biosens Bioelectron; 2024 Jan; 243():115757. PubMed ID: 37862758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust double-network polyvinyl alcohol-polypyrrole hydrogels as high-performance electrodes for flexible supercapacitors.
    Li W; Chen W; Ma L; Yang J; Gao M; Wang K; Yu H; Lv R; Fu M
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):540-548. PubMed ID: 37607416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li Salt Assisted Highly Flexible Carbonaceous Ni
    Adalati R; Sharma S; Sharma M; Kumar P; Bansal A; Kumar A; Chandra R
    Nano Lett; 2024 Jan; 24(1):362-369. PubMed ID: 38157323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Multi-Layered Paper-Based Supercapacitor Anode by Growing Cu(OH)
    Zhang G; Li Y; Zhu R; Huang Z; Zhang D; Long Z; Li Y
    Small; 2024 Feb; 20(5):e2305136. PubMed ID: 37759415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayered microelectrodes based on electrochemically deposited MnO
    Haider WA; He L; Mirza HA; Tahir M; Khan AM; Owusu KA; Yang W; Wang Z; Mai L
    RSC Adv; 2020 May; 10(31):18245-18251. PubMed ID: 35517224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Network-Structured Carbon Nanofiber Mats Based on PAN Blends Using Electrospinning and Hot-Pressing Methods for Supercapacitor Applications.
    Ma MJ; Seong JG; Radhakrishnan S; Ko TH; Kim BS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinning the Future: The Convergence of Nanofiber Technologies and Yarn Fabrication.
    Chen L; Mei S; Fu K; Zhou J
    ACS Nano; 2024 Jun; 18(24):15358-15386. PubMed ID: 38837241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Characteristic Effect of Ag/TiO
    Cui J; Cao L; Zeng D; Wang X; Li W; Lin Z; Zhang P
    Scanning; 2018; 2018():2464981. PubMed ID: 30140359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.