BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 32859791)

  • 1. Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke.
    Hu J; Liu PL; Hua Y; Gao BY; Wang YY; Bai YL; Chen C
    Neural Regen Res; 2021 Feb; 16(2):319-324. PubMed ID: 32859791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion.
    Gao BY; Xu DS; Liu PL; Li C; Du L; Hua Y; Hu J; Hou JY; Bai YL
    Neural Regen Res; 2020 Jun; 15(6):1045-1057. PubMed ID: 31823884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus.
    Hu J; Li C; Hua Y; Liu P; Gao B; Wang Y; Bai Y
    Brain Res Bull; 2020 Jul; 160():8-23. PubMed ID: 32298779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites.
    Liu B; Liao M; Mielke JG; Ning K; Chen Y; Li L; El-Hayek YH; Gomez E; Zukin RS; Fehlings MG; Wan Q
    J Neurosci; 2006 May; 26(20):5309-19. PubMed ID: 16707783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA-Dependent Membrane Surface Recruitment of CI-AMPARs Is Crucial for BCP-Mediated Protection Against Post-acute Ischemic Stroke Cognitive Impairment.
    Chen S; Wang Y; Wang X; He M; Zhang L; Dong Z
    Front Neurol; 2020; 11():566067. PubMed ID: 33391143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paired associated magnetic stimulation promotes neural repair in the rat middle cerebral artery occlusion model of stroke.
    Gao BY; Sun CC; Xia GH; Zhou ST; Zhang Y; Mao YR; Liu PL; Zheng Y; Zhao D; Li XT; Xu J; Xu DS; Bai YL
    Neural Regen Res; 2020 Nov; 15(11):2047-2056. PubMed ID: 32394960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constrained-induced movement therapy promotes motor function recovery by enhancing the remodeling of ipsilesional corticospinal tract in rats after stroke.
    Hu J; Li C; Hua Y; Zhang B; Gao BY; Liu PL; Sun LM; Lu RR; Wang YY; Bai YL
    Brain Res; 2019 Apr; 1708():27-35. PubMed ID: 30471245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constraint induced movement therapy promotes contralesional-oriented structural and bihemispheric functional neuroplasticity after stroke.
    Liu P; Li C; Zhang B; Zhang Z; Gao B; Liu Y; Wang Y; Hua Y; Hu J; Qiu X; Bai Y
    Brain Res Bull; 2019 Aug; 150():201-206. PubMed ID: 31181321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraint Induced Movement Therapy as a Rehabilitative Strategy for Ischemic Stroke-Linking Neural Plasticity with Restoration of Skilled Movements.
    Nesin SM; Sabitha KR; Gupta A; Laxmi TR
    J Stroke Cerebrovasc Dis; 2019 Jun; 28(6):1640-1653. PubMed ID: 30904472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of early constraint-induced movement therapy and fasudil enhances motor recovery after ischemic stroke in rats.
    Liu YH; Zhao Y; Huang FZ; Chen YH; Wang HX; Bonney E; Liu BQ
    Int J Neurosci; 2016; 126(2):168-73. PubMed ID: 25526355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats.
    Zhao S; Zhao M; Xiao T; Jolkkonen J; Zhao C
    Stroke; 2013 Jun; 44(6):1698-705. PubMed ID: 23632976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological and functional assessment of the efficacy of constraint-induced movement therapy in rats following neonatal hypoxic-ischemic brain injury.
    Kim H; Kim MJ; Koo YS; Lee HI; Lee SW; Shin MJ; Kim SY; Shin YB; Shin YI; Choi BT; Yun YJ; Shin HK
    Exp Ther Med; 2017 Jun; 13(6):2775-2782. PubMed ID: 28587341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion.
    Zhai ZY; Feng J
    Neural Regen Res; 2019 Oct; 14(10):1743-1754. PubMed ID: 31169192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-stroke Constraint-induced Movement Therapy Increases Functional Recovery, Angiogenesis, and Neurogenesis with Enhanced Expression of HIF-1α and VEGF.
    Li C; Zhang B; Zhu Y; Li Y; Liu P; Gao B; Tian S; Du L; Bai Y
    Curr Neurovasc Res; 2017; 14(4):368-377. PubMed ID: 29189156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons.
    Song J; Shen G; Greenfield LJ; Tietz EI
    J Pharmacol Exp Ther; 2007 Aug; 322(2):569-81. PubMed ID: 17510319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons.
    Qin X; Jiang Y; Tse YC; Wang Y; Wong TP; Paudel HK
    J Biol Chem; 2015 Dec; 290(49):29603-16. PubMed ID: 26475861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: a micro PET/CT study.
    Li YY; Zhang B; Yu KW; Li C; Xie HY; Bao WQ; Kong YY; Jiao FY; Guan YH; Bai YL
    Int J Neurosci; 2018 Aug; 128(8):736-745. PubMed ID: 29251083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal.
    Das P; Lilly SM; Zerda R; Gunning WT; Alvarez FJ; Tietz EI
    J Comp Neurol; 2008 Dec; 511(6):832-46. PubMed ID: 18924138
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.