BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32860113)

  • 1. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black.
    Li Z; Zhang H; Zha Q; Zhai C; Li W; Zeng L; Zhu M
    Mikrochim Acta; 2020 Aug; 187(9):526. PubMed ID: 32860113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine.
    Gao LL; Sun WJ; Yin XM; Bu R; Gao EQ
    Mikrochim Acta; 2019 Nov; 186(12):762. PubMed ID: 31712906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine.
    Zhang L; Li S; Xin J; Ma H; Pang H; Tan L; Wang X
    Mikrochim Acta; 2018 Dec; 186(1):9. PubMed ID: 30535722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples.
    Zhang W; Duan D; Liu S; Zhang Y; Leng L; Li X; Chen N; Zhang Y
    Biosens Bioelectron; 2018 Oct; 118():129-136. PubMed ID: 30075383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF; Zou J; Liu YP; Jiang XY; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110872. PubMed ID: 32559693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A covalent organic polymer-TiO
    Lu X; Li S; Guo W; Zhang F; Qu F
    Mikrochim Acta; 2021 Feb; 188(3):95. PubMed ID: 33619673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MIL-88B(Fe) MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of malathion.
    Janjani P; Bhardwaj U; Agarwal M; Gupta R; Kushwaha HS
    Environ Technol; 2024 May; 45(13):2649-2659. PubMed ID: 36772960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode.
    Yu HW; Zhang Z; Jiang JH; Pan HZ; Chang D
    J Clin Lab Anal; 2018 Mar; 32(3):. PubMed ID: 28940690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine.
    Zhou K; Shen D; Li X; Chen Y; Hou L; Zhang Y; Sha J
    Talanta; 2020 Mar; 209():120507. PubMed ID: 31892003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu
    Li Z; Dai G; Luo F; Lu Y; Zhang J; Chu Z; He P; Zhang F; Wang Q
    Mikrochim Acta; 2020 Jun; 187(7):415. PubMed ID: 32607635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive Electrochemical Sensor Based On an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine.
    Massah RT; Zambou Jiokeng SL; Liang J; Njanja E; Ma Ntep TM; Spiess A; Rademacher L; Janiak C; Tonle IK
    ACS Omega; 2022 Jun; 7(23):19420-19427. PubMed ID: 35721937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor.
    Hira SA; Nallal M; Rajendran K; Song S; Park S; Lee JM; Joo SH; Park KH
    Anal Chim Acta; 2020 Jun; 1118():26-35. PubMed ID: 32418601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ insertion of multi-walled carbon nanotubes in the Fe
    Yuan S; Bo X; Guo L
    Talanta; 2019 Feb; 193():100-109. PubMed ID: 30368277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label-free electrochemical aptasensor based on platinum nanoparticles loaded on Fe-based metal-organic frameworks.
    Jahangiri-Dehaghani F; Zare HR; Shekari Z
    Food Chem; 2020 Apr; 310():125820. PubMed ID: 31810725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical sensor based on CuSe for determination of dopamine.
    Umapathi S; Masud J; Coleman H; Nath M
    Mikrochim Acta; 2020 Jul; 187(8):440. PubMed ID: 32653955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene.
    Chen D; Tian C; Li X; Li Z; Han Z; Zhai C; Quan Y; Cui R; Zhang G
    Mikrochim Acta; 2018 Jan; 185(2):98. PubMed ID: 29594422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid.
    Yao Y; Zhong J; Lu Z; Liu X; Wang Y; Liu T; Zou P; Dai X; Wang X; Ding F; Zhou C; Zhao Q; Rao H
    Mikrochim Acta; 2019 Nov; 186(12):795. PubMed ID: 31734752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved electrocatalytic activity of Au@Fe
    Thamilselvan A; Manivel P; Rajagopal V; Nesakumar N; Suryanarayanan V
    Colloids Surf B Biointerfaces; 2019 Aug; 180():1-8. PubMed ID: 31009905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design and facile synthesis of binary metal sulfides VS
    Sakthivel R; Kubendhiran S; Chen SM; Kumar JV
    Anal Chim Acta; 2019 Sep; 1071():98-108. PubMed ID: 31128761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical sensor based on Ni-exchanged natural zeolite/carbon black hybrid nanocomposite for determination of vitamin B
    Porada R; Fendrych K; Baś B
    Mikrochim Acta; 2021 Sep; 188(10):323. PubMed ID: 34487246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.