BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32860420)

  • 1. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in
    Lall D; Miscevic D; Bruder M; Westbrook A; Aucoin M; Moo-Young M; Perry Chou C
    Bioresour Bioprocess; 2021; 8(1):122. PubMed ID: 34970474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli.
    Miscevic D; Srirangan K; Kefale T; Kilpatrick S; Chung DA; Moo-Young M; Chou CP
    Metab Eng; 2020 Sep; 61():141-151. PubMed ID: 31726215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli.
    Shih IT; Yi YC; Ng IS
    Appl Biochem Biotechnol; 2021 Sep; 193(9):2858-2871. PubMed ID: 33860878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Deficiency of succinic dehydrogenase or succinyl-coA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli].
    Pu W; Chen J; Sun C; Chen N; Sun J; Zheng P; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1494-503. PubMed ID: 24432664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level heterologous production of propionate in engineered Escherichia coli.
    Miscevic D; Mao JY; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2020 May; 117(5):1304-1315. PubMed ID: 31956980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli.
    Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X
    Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli.
    Miscevic D; Mao JY; Mozell B; Srirangan K; Abedi D; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1435-1446. PubMed ID: 33484319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli.
    Yu TH; Yi YC; Shih IT; Ng IS
    Appl Biochem Biotechnol; 2020 May; 191(1):299-312. PubMed ID: 31845195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield.
    Yang P; Liu W; Cheng X; Wang J; Wang Q; Qi Q
    Appl Environ Microbiol; 2016 May; 82(9):2709-2717. PubMed ID: 26921424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production.
    Ge F; Li X; Ge Q; Zhu D; Li W; Shi F; Chen H
    AMB Express; 2021 Dec; 11(1):179. PubMed ID: 34958433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Weng H; Zhou Z; Du G; Kang Z
    Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in microbial production of 5-aminolevulinic acid].
    Kang Z; Zhang J; Yang S; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1214-22. PubMed ID: 24409685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield production of L-serine from glycerol by engineered Escherichia coli.
    Zhang X; Zhang D; Zhu J; Liu W; Xu G; Zhang X; Shi J; Xu Z
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):221-230. PubMed ID: 30600411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.