These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD Gene; 2020 Aug; 753():144795. PubMed ID: 32450202 [TBL] [Abstract][Full Text] [Related]
3. Application of Nanotechnology in Plant Genetic Engineering. Wu K; Xu C; Li T; Ma H; Gong J; Li X; Sun X; Hu X Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834283 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Chen K; Wang Y; Zhang R; Zhang H; Gao C Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493 [TBL] [Abstract][Full Text] [Related]
5. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. Khanna K; Ohri P; Bhardwaj R Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619 [TBL] [Abstract][Full Text] [Related]
6. Emerging Genome Engineering Tools in Crop Research and Breeding. Bilichak A; Gaudet D; Laurie J Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446 [TBL] [Abstract][Full Text] [Related]
7. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Vats S; Kumawat S; Kumar V; Patil GB; Joshi T; Sonah H; Sharma TR; Deshmukh R Cells; 2019 Nov; 8(11):. PubMed ID: 31689989 [TBL] [Abstract][Full Text] [Related]
8. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas9 Application in Canadian Public and Private Plant Breeding. Gleim S; Lubieniechi S; Smyth SJ CRISPR J; 2020 Feb; 3(1):44-51. PubMed ID: 32091256 [TBL] [Abstract][Full Text] [Related]
10. An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Sufyan M; Daraz U; Hyder S; Zulfiqar U; Iqbal R; Eldin SM; Rafiq F; Mahmood N; Shahzad K; Uzair M; Fiaz S; Ali I Funct Integr Genomics; 2023 Apr; 23(2):119. PubMed ID: 37022538 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Schaeffer SM; Nakata PA Plant Sci; 2015 Nov; 240():130-42. PubMed ID: 26475194 [TBL] [Abstract][Full Text] [Related]
12. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Gupta S; Kumar A; Patel R; Kumar V Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124 [TBL] [Abstract][Full Text] [Related]
13. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related]
14. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Scheben A; Edwards D Curr Opin Plant Biol; 2018 Oct; 45(Pt B):218-225. PubMed ID: 29752075 [TBL] [Abstract][Full Text] [Related]
15. Crop bioengineering via gene editing: reshaping the future of agriculture. Atia M; Jiang W; Sedeek K; Butt H; Mahfouz M Plant Cell Rep; 2024 Mar; 43(4):98. PubMed ID: 38494539 [TBL] [Abstract][Full Text] [Related]
16. A Short History and Perspectives on Plant Genetic Transformation. Ramkumar TR; Lenka SK; Arya SS; Bansal KC Methods Mol Biol; 2020; 2124():39-68. PubMed ID: 32277448 [TBL] [Abstract][Full Text] [Related]
17. A critical look on CRISPR-based genome editing in plants. Ahmad N; Rahman MU; Mukhtar Z; Zafar Y; Zhang B J Cell Physiol; 2020 Feb; 235(2):666-682. PubMed ID: 31317541 [TBL] [Abstract][Full Text] [Related]