Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32861031)

  • 1. The design and characterization of a gravitational microfluidic platform for drug sensitivity assay in colorectal perfused tumoroid cultures.
    Wang T; Green R; Howell M; Martinez T; Dutta R; Mohapatra S; Mohapatra SS
    Nanomedicine; 2020 Nov; 30():102294. PubMed ID: 32861031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer.
    Sogawa C; Eguchi T; Namba Y; Okusha Y; Aoyama E; Ohyama K; Okamoto K
    Cells; 2021 Feb; 10(2):. PubMed ID: 33562088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified ARCHITECT microfluidic chip through a dual-flip strategy enables stable and versatile tumoroid formation combined with label-free quantitative proteomic analysis.
    Feng D; Lv J; Abdulla A; Xu J; Sang X; Wang L; Liu W; Lou J; Bo Z; Ding X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33578405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-layer guided surface acoustic wave (SAW)-based pH sensing in longitudinal FiSS-tumoroid cultures.
    Wang T; Green R; Guldiken R; Mohapatra S; Mohapatra S
    Biosens Bioelectron; 2019 Jan; 124-125():244-252. PubMed ID: 30390467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of in vitro 3D cultures.
    Mousavi N
    APMIS; 2021 Aug; 129 Suppl 142():1-30. PubMed ID: 34399444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mithramycin A Inhibits Colorectal Cancer Growth by Targeting Cancer Stem Cells.
    Quarni W; Dutta R; Green R; Katiri S; Patel B; Mohapatra SS; Mohapatra S
    Sci Rep; 2019 Oct; 9(1):15202. PubMed ID: 31645574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development.
    Girard YK; Wang C; Ravi S; Howell MC; Mallela J; Alibrahim M; Green R; Hellermann G; Mohapatra SS; Mohapatra S
    PLoS One; 2013; 8(10):e75345. PubMed ID: 24146752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids.
    Truelsen SLB; Mousavi N; Wei H; Harvey L; Stausholm R; Spillum E; Hagel G; Qvortrup K; Thastrup O; Harling H; Mellor H; Thastrup J
    PLoS One; 2021; 16(7):e0253258. PubMed ID: 34234354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures.
    Finnberg NK; Gokare P; Lev A; Grivennikov SI; MacFarlane AW; Campbell KS; Winters RM; Kaputa K; Farma JM; Abbas AE; Grasso L; Nicolaides NC; El-Deiry WS
    Oncotarget; 2017 Sep; 8(40):66747-66757. PubMed ID: 28977993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform.
    Liu W; Sun M; Han K; Wang J
    Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorectal Adenocarcinoma Cell Culture in a Microfluidically Controlled Environment with a Static Molecular Gradient of Polyphenol.
    Szafran RG; Gąsiorowski K; Wiatrak B
    Molecules; 2021 May; 26(11):. PubMed ID: 34072020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device.
    Fan L; Luo T; Guan Z; Chow YT; Chen S; Wei T; Shakoor A; Lam RHW; Sun D
    Biofabrication; 2020 Apr; 12(3):035005. PubMed ID: 32182591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of cancer stem cell-based tumoroids as an osteosarcoma model.
    Ozturk S; Gorgun C; Gokalp S; Vatansever S; Sendemir A
    Biotechnol Bioeng; 2020 Aug; 117(8):2527-2539. PubMed ID: 32391924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids.
    Shirure VS; Bi Y; Curtis MB; Lezia A; Goedegebuure MM; Goedegebuure SP; Aft R; Fields RC; George SC
    Lab Chip; 2018 Dec; 18(23):3687-3702. PubMed ID: 30393802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive three-dimensional silk composite in vitro tumoroid model for high throughput screening of anticancer drugs.
    Arora D; Bhunia BK; Janani G; Mandal BB
    J Colloid Interface Sci; 2021 May; 589():438-452. PubMed ID: 33485251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions.
    Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P
    Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial tumor matrices and bioengineered tools for tumoroid generation.
    Liu YC; Chen P; Chang R; Liu X; Jhang JW; Enkhbat M; Chen S; Wang H; Deng C; Wang PY
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38306665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.