These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32861182)

  • 1. Biomechanical modelling and computer aided simulation of deep brain retraction in neurosurgery.
    Awasthi A; Gautam U; Bhaskar S; Roy S
    Comput Methods Programs Biomed; 2020 Dec; 197():105688. PubMed ID: 32861182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of brain retraction mechanisms using finite element analysis and the effects of regionally heterogeneous material properties.
    Griffiths E; Jayamohan J; Budday S
    Biomech Model Mechanobiol; 2024 Jun; 23(3):793-808. PubMed ID: 38361082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo quantification of retraction deformation modeling for updated image-guidance during neurosurgery.
    Platenik LA; Miga MI; Roberts DW; Lunn KE; Kennedy FE; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):823-35. PubMed ID: 12148821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deformation model of pulsating brain tissue for neurosurgery simulation.
    Ying H; Liu PX; Hou W
    Comput Methods Programs Biomed; 2022 May; 218():106729. PubMed ID: 35279603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D XFEM-based modeling of retraction for preoperative image update.
    Vigneron LM; Warfield SK; Robe PA; Verly JG
    Comput Aided Surg; 2011; 16(3):121-34. PubMed ID: 21476788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain mechanics For neurosurgery: modeling issues.
    Kyriacou SK; Mohamed A; Miller K; Neff S
    Biomech Model Mechanobiol; 2002 Oct; 1(2):151-64. PubMed ID: 14595547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation and modelling of brain tissue for surgical simulation.
    Mendizabal A; Aguinaga I; Sánchez E
    J Mech Behav Biomed Mater; 2015 May; 45():1-10. PubMed ID: 25676499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.
    Wittek A; Joldes G; Couton M; Warfield SK; Miller K
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):292-303. PubMed ID: 20868706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of brain tissue in-vivo: experiment and computer simulation.
    Miller K; Chinzei K; Orssengo G; Bednarz P
    J Biomech; 2000 Nov; 33(11):1369-76. PubMed ID: 10940395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Investigation of the Effectiveness of a Hyper-viscoelastic Model in Simulating Brain Retraction.
    Li P; Wang W; Zhang C; An Y; Song Z
    Sci Rep; 2016 Jul; 6():28654. PubMed ID: 27387301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner.
    Li P; Wang W; Song Z; An Y; Zhang C
    Int J Comput Assist Radiol Surg; 2014 Jul; 9(4):669-81. PubMed ID: 24293030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures.
    Miller K
    J Biomech; 1999 May; 32(5):531-7. PubMed ID: 10327007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Deformation Model of Biological Tissue for Surgery Simulation.
    Zou Y; Liu PX; Cheng Q; Lai P; Li C
    IEEE Trans Cybern; 2017 Nov; 47(11):3494-3503. PubMed ID: 27187979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery.
    Coelho G; Rabelo NN; Vieira E; Mendes K; Zagatto G; Santos de Oliveira R; Raposo-Amaral CE; Yoshida M; de Souza MR; Fagundes CF; Teixeira MJ; Figueiredo EG
    Neurosurg Focus; 2020 Mar; 48(3):E19. PubMed ID: 32114555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new model of soft tissue with constraints for interactive surgical simulation.
    Hou W; Liu PX; Zheng M
    Comput Methods Programs Biomed; 2019 Jul; 175():35-43. PubMed ID: 31104713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy.
    Zhang J; Lay RJ; Roberts SK; Chauhan S
    Comput Methods Programs Biomed; 2021 Jan; 198():105789. PubMed ID: 33069033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.