BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3286127)

  • 1. Proteolytic changes in main intrinsic polypeptide (MIP26) from membranes in selenite cataract.
    David LL; Takemoto LJ; Anderson RS; Shearer TR
    Curr Eye Res; 1988 Apr; 7(4):411-7. PubMed ID: 3286127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifications to rat lens major intrinsic protein in selenite-induced cataract.
    Schey KL; Fowler JG; Shearer TR; David L
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesis.
    David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1275-83. PubMed ID: 6386740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited proteolysis of MP26 in lens fiber plasma membranes of the U18666A-induced cataract in rats.
    Alcala J; Cenedella RJ; Katar M
    Curr Eye Res; 1985 Sep; 4(9):1001-5. PubMed ID: 3905265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of urea-soluble protein in the selenite cataract. Role of beta-crystallin proteolysis and calpain II.
    David LL; Dickey BM; Shearer TR
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1148-56. PubMed ID: 3036741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbaric oxygen in vivo accelerates the loss of cytoskeletal proteins and MIP26 in guinea pig lens nucleus.
    Padgaonkar VA; Lin LR; Leverenz VR; Rinke A; Reddy VN; Giblin FJ
    Exp Eye Res; 1999 Apr; 68(4):493-504. PubMed ID: 10192807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions.
    Bok D; Dockstader J; Horwitz J
    J Cell Biol; 1982 Jan; 92(1):213-20. PubMed ID: 7035467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of lens membrane intrinsic proteins.
    Swamy MS; Abraham EC
    Curr Eye Res; 1992 Sep; 11(9):833-42. PubMed ID: 1424726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of the limited proteolysis of MP26 during the reversal and prevention of the galactose cataract in rat lenses.
    Alcala J; Unakar N; Katar M; Tsui J
    Curr Eye Res; 1990 Mar; 9(3):225-32. PubMed ID: 2189687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo.
    Mitton KP; Kamiya T; Tumminia SJ; Russell P
    J Biol Chem; 1996 Dec; 271(50):31803-6. PubMed ID: 8943220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited proteolysis of MP26 in lens fiber plasma membranes of the galactose-induced cataract in the rat.
    Alcala J; Unakar NJ; Katar M; Tsui JY
    Curr Eye Res; 1986 Sep; 5(9):697-703. PubMed ID: 3533434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin site at the C-terminus of the putative lens gap junction protein MIP26.
    Peracchia C; Girsch SJ
    Lens Eye Toxic Res; 1989; 6(4):613-21. PubMed ID: 2487274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous expression in Escherichia coli of native and mutant forms of the major intrinsic protein of rat eye lens (MIP26).
    Dilsiz N; Crabbe MJ
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):753-9. PubMed ID: 7848273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major intrinsic polypeptide (MIP26K) of the lens membrane: covalent change in an internal sequence during human senile cataractogenesis.
    Takemoto L; Smith J; Kodama T
    Biochem Biophys Res Commun; 1987 Feb; 142(3):761-6. PubMed ID: 3827901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenite cataract: a review.
    Shearer TR; David LL; Anderson RS
    Curr Eye Res; 1987 Feb; 6(2):289-300. PubMed ID: 3032516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of MIP26 from single human lenses into artificial membranes. I. Differences in pH sensitivity of cataractous vs. normal human lens fiber cell proteins.
    Gooden MM; Takemoto LJ; Rintoul DA
    Curr Eye Res; 1985 Nov; 4(11):1107-15. PubMed ID: 3907982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in lens membrane major intrinsic polypeptide during cataractogenesis in aged Hannover Wistar rats.
    Takemoto LJ; Gorthy WC; Morin CL; Steward DE
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):556-61. PubMed ID: 2001929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational properties of the main intrinsic polypeptide (MIP26) isolated from lens plasma membranes.
    Horwitz J; Bok D
    Biochemistry; 1987 Dec; 26(25):8092-8. PubMed ID: 3442647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional distribution of free calcium in selenite cataract: relation to calpain II.
    Hightower KR; David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1702-6. PubMed ID: 2820891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycation of lens MIP26 affects the permeability in reconstituted liposomes.
    Swamy MS; Abraham EC
    Biochem Biophys Res Commun; 1992 Jul; 186(2):632-8. PubMed ID: 1497652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.