These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32861565)

  • 41. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preprocessing techniques for high-speed videoendoscopy analysis.
    Ikuma T; Kunduk M; McWhorter AJ
    J Voice; 2013 Jul; 27(4):500-5. PubMed ID: 23490125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.
    Mehta DD; Deliyski DD; Quatieri TF; Hillman RE
    J Speech Lang Hear Res; 2011 Feb; 54(1):47-54. PubMed ID: 20699347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of Vocal Fold Vibration in Various Laryngeal Disorders Using High-Speed Digital Imaging.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara K; Nito T; Tayama N; Yamasoba T
    J Voice; 2016 Mar; 30(2):205-14. PubMed ID: 26003886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging.
    Kunduk M; Vansant MB; Ikuma T; McWhorter A
    J Voice; 2017 Mar; 31(2):182-187. PubMed ID: 27614383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multivariate Analysis of Vocal Fold Vibrations in Normal Speakers Using High-Speed Digital Imaging.
    Yamauchi A; Imagawa H; Yokonishi H; Sakakibara KI; Tayama N
    J Voice; 2024 Jan; 38(1):10-17. PubMed ID: 34470706
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
    Herbst CT; Lohscheller J; Švec JG; Henrich N; Weissengruber G; Fitch WT
    J Exp Biol; 2014 Mar; 217(Pt 6):955-63. PubMed ID: 24622896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of Cricothyroid Muscle Contraction on Vocal Fold Vibration: Experimental Study with High-Speed Videoendoscopy.
    Ishikawa CC; Pinheiro TG; Hachiya A; Montagnoli AN; Tsuji DH
    J Voice; 2017 May; 31(3):300-306. PubMed ID: 27692725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.
    Chhetri DK; Neubauer J; Sofer E
    Laryngoscope; 2014 Nov; 124(11):2544-50. PubMed ID: 24913182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative Analysis of Vocal Fold Vibration in Vocal Fold Paralysis With the Use of High-speed Digital Imaging.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara KI; Nito T; Tayama N
    J Voice; 2016 Nov; 30(6):766.e13-766.e22. PubMed ID: 26652777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visual-perceptive assessment of glottic characteristics of vocal nodules by means of high-speed videoendoscopy.
    Korn GP; Gama ACC; Nascimento UND
    Braz J Otorhinolaryngol; 2023; 89(4):101275. PubMed ID: 37271116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. OpenHSV: an open platform for laryngeal high-speed videoendoscopy.
    Kist AM; Dürr S; Schützenberger A; Döllinger M
    Sci Rep; 2021 Jul; 11(1):13760. PubMed ID: 34215788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Vocal Fold Nodules on Glottal Cycle Measurements Derived from High-Speed Videoendoscopy in Children.
    Patel RR; Unnikrishnan H; Donohue KD
    PLoS One; 2016; 11(4):e0154586. PubMed ID: 27124157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative analysis of vocal fold vibration using high-speed videoendoscopy and digital kymography.
    Baravieira PB; Brasolotto AG; Hachiya A; Takahashi-Ramos MT; Tsuji DH; Montagnoli AN
    J Voice; 2014 Sep; 28(5):603-7. PubMed ID: 24726330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vocal fold vibratory characteristics in normal female speakers from high-speed digital imaging.
    Ahmad K; Yan Y; Bless DM
    J Voice; 2012 Mar; 26(2):239-53. PubMed ID: 21621975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the variability of vocal fold dynamics within and between recordings with high-speed imaging and by phonovibrogram.
    Kunduk M; Doellinger M; McWhorter AJ; Lohscheller J
    Laryngoscope; 2010 May; 120(5):981-7. PubMed ID: 20422695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A portable high-speed camera system for vocal fold examinations.
    Hertegård S; Larsson H
    J Voice; 2014 Nov; 28(6):681-7. PubMed ID: 25008381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.