These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32861565)

  • 61. A portable high-speed camera system for vocal fold examinations.
    Hertegård S; Larsson H
    J Voice; 2014 Nov; 28(6):681-7. PubMed ID: 25008381
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of Videostroboscopy to Stroboscopy Derived From High-Speed Videoendoscopy for Evaluating Patients With Vocal Fold Mass Lesions.
    Powell ME; Deliyski DD; Hillman RE; Zeitels SM; Burns JA; Mehta DD
    Am J Speech Lang Pathol; 2016 Nov; 25(4):576-589. PubMed ID: 27716854
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Glottal Airflow and Glottal Area Waveform Characteristics of Flow Phonation in Untrained Vocally Healthy Adults.
    Patel RR; Sundberg J; Gill B; Lã FMB
    J Voice; 2022 Jan; 36(1):140.e1-140.e21. PubMed ID: 32868146
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Different Vibratory Conditions Elicit Different Structural and Biological Vocal Fold Changes in an In-Vivo Rabbit Model of Phonation.
    Kimball EE; Sayce L; Powell M; Gartling GJ; Brandley J; Rousseau B
    J Voice; 2021 Mar; 35(2):216-225. PubMed ID: 31542239
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of vocal fold epithelium removal on vibration in an excised human larynx model.
    Tse JR; Zhang Z; Long JL
    J Acoust Soc Am; 2015 Jul; 138(1):EL60-4. PubMed ID: 26233062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Investigation of the Immediate Effects of Humming on Vocal Fold Vibration Irregularity Using Electroglottography and High-speed Laryngoscopy in Patients With Organic Voice Disorders.
    Vlot C; Ogawa M; Hosokawa K; Iwahashi T; Kato C; Inohara H
    J Voice; 2017 Jan; 31(1):48-56. PubMed ID: 27178453
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantification of videostrobolaryngoscopic findings--measurements of the normal glottal cycle.
    Woo P
    Laryngoscope; 1996 Mar; 106(3 Pt 2 Suppl 79):1-27. PubMed ID: 8609806
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Period and glottal width irregularities in vocally normal speakers.
    Bonilha HS; Deliyski DD
    J Voice; 2008 Nov; 22(6):699-708. PubMed ID: 18031989
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phase asymmetries in normophonic speakers: visual judgments and objective findings.
    Bonilha HS; Deliyski DD; Gerlach TT
    Am J Speech Lang Pathol; 2008 Nov; 17(4):367-76. PubMed ID: 18840697
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reliability of laryngostroboscopic evaluation on lesion size and glottal configuration: a revisit.
    Yiu EM; Lau VC; Ma EP; Chan KM; Barrett E
    Laryngoscope; 2014 Jul; 124(7):1638-44. PubMed ID: 24222186
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Spatiotemporal Approach to the Objective Analysis of Initiation and Termination of Vocal-fold Oscillation With High-speed Videoendoscopy.
    Ikuma T; Kunduk M; Fink D; McWhorter AJ
    J Voice; 2016 Nov; 30(6):756.e21-756.e30. PubMed ID: 26654851
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A preliminary study of a quantitative analysis method for high speed laryngoscopic images.
    Yiu EM; Kong J; Fong R; Chan KM
    Int J Speech Lang Pathol; 2010 Dec; 12(6):520-8. PubMed ID: 20482465
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitative analysis of videokymography in normal and pathological vocal folds: a preliminary study.
    Piazza C; Mangili S; Del Bon F; Gritti F; Manfredi C; Nicolai P; Peretti G
    Eur Arch Otorhinolaryngol; 2012 Jan; 269(1):207-12. PubMed ID: 21959848
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Objective measures of laryngeal imaging: what have we learned since Dr. Paul Moore.
    Woo P
    J Voice; 2014 Jan; 28(1):69-81. PubMed ID: 24094798
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bayesian estimation of vocal function measures using laryngeal high-speed videoendoscopy and glottal airflow estimates: An in vivo case study.
    Alzamendi GA; Manríquez R; Hadwin PJ; Deng JJ; Peterson SD; Erath BD; Mehta DD; Hillman RE; Zañartu M
    J Acoust Soc Am; 2020 May; 147(5):EL434. PubMed ID: 32486812
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Value of high-speed videoendoscopy as an auxiliary tool in differentiation of benign and malignant unilateral vocal lesions.
    Malinowski J; Pietruszewska W; Kowalczyk M; Niebudek-Bogusz E
    J Cancer Res Clin Oncol; 2024 Jan; 150(1):10. PubMed ID: 38216796
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis.
    Kist AM; Gómez P; Dubrovskiy D; Schlegel P; Kunduk M; Echternach M; Patel R; Semmler M; Bohr C; Dürr S; Schützenberger A; Döllinger M
    J Speech Lang Hear Res; 2021 Jun; 64(6):1889-1903. PubMed ID: 34000199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.