BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 32861913)

  • 21. Attention-modulated multi-branch convolutional neural networks for neonatal brain tissue segmentation.
    Fan X; Shan S; Li X; Li J; Mi J; Yang J; Zhang Y
    Comput Biol Med; 2022 Jul; 146():105522. PubMed ID: 35525069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588. PubMed ID: 27908163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.
    Bahrami K; Rekik I; Shi F; Gao Y; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():572-580. PubMed ID: 28149968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation.
    Nie D; Wang L; Adeli E; Lao C; Lin W; Shen D
    IEEE Trans Cybern; 2019 Mar; 49(3):1123-1136. PubMed ID: 29994385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. APRNet: A 3D Anisotropic Pyramidal Reversible Network With Multi-Modal Cross-Dimension Attention for Brain Tissue Segmentation in MR Images.
    Zhuang Y; Liu H; Song E; Ma G; Xu X; Hung CC
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):749-761. PubMed ID: 34197331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular schwannoma treatment planning.
    Lee WK; Wu CC; Lee CC; Lu CF; Yang HC; Huang TH; Lin CY; Chung WY; Wang PS; Wu HM; Guo WY; Wu YT
    Artif Intell Med; 2020 Jul; 107():101911. PubMed ID: 32828450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrast-Enhanced Liver Magnetic Resonance Image Synthesis Using Gradient Regularized Multi-Modal Multi-Discrimination Sparse Attention Fusion GAN.
    Jiao C; Ling D; Bian S; Vassantachart A; Cheng K; Mehta S; Lock D; Zhu Z; Feng M; Thomas H; Scholey JE; Sheng K; Fan Z; Yang W
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES.
    Rashed EA; Gomez-Tames J; Hirata A
    Phys Med Biol; 2021 Mar; 66(6):064002. PubMed ID: 33524957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
    Wang L; Gao Y; Shi F; Li G; Gilmore JH; Lin W; Shen D
    Neuroimage; 2015 Mar; 108():160-72. PubMed ID: 25541188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation.
    Cui H; Yuwen C; Jiang L; Xia Y; Zhang Y
    Comput Biol Med; 2021 Sep; 136():104726. PubMed ID: 34371318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain tumor image generation using an aggregation of GAN models with style transfer.
    Mukherkjee D; Saha P; Kaplun D; Sinitca A; Sarkar R
    Sci Rep; 2022 Jun; 12(1):9141. PubMed ID: 35650252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.
    Wels M; Zheng Y; Huber M; Hornegger J; Comaniciu D
    Phys Med Biol; 2011 Jun; 56(11):3269-300. PubMed ID: 21558592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.
    Sauwen N; Acou M; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Huffel SV
    BMC Med Imaging; 2017 May; 17(1):29. PubMed ID: 28472943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.
    Sun L; Shao W; Zhang D; Liu M
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2000-2012. PubMed ID: 31899417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors.
    Raut P; Baldini G; Schöneck M; Caldeira L
    Front Radiol; 2023; 3():1336902. PubMed ID: 38304344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D convolutional neural networks for tumor segmentation using long-range 2D context.
    Mlynarski P; Delingette H; Criminisi A; Ayache N
    Comput Med Imaging Graph; 2019 Apr; 73():60-72. PubMed ID: 30889541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An attention-based context-informed deep framework for infant brain subcortical segmentation.
    Chen L; Wu Z; Zhao F; Wang Y; Lin W; Wang L; Li G
    Neuroimage; 2023 Apr; 269():119931. PubMed ID: 36746299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ABCnet: Adversarial bias correction network for infant brain MR images.
    Chen L; Wu Z; Hu D; Wang F; Smith JK; Lin W; Wang L; Shen D; Li G; Consortium FUBCP
    Med Image Anal; 2021 Aug; 72():102133. PubMed ID: 34225011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving Automated Glioma Segmentation in Routine Clinical Use Through Artificial Intelligence-Based Replacement of Missing Sequences With Synthetic Magnetic Resonance Imaging Scans.
    Thomas MF; Kofler F; Grundl L; Finck T; Li H; Zimmer C; Menze B; Wiestler B
    Invest Radiol; 2022 Mar; 57(3):187-193. PubMed ID: 34652289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.