These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32862079)

  • 1. Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains.
    Mekkaoui I; Pousin J; Hesthaven J; Li JR
    J Magn Reson; 2020 Sep; 318():106809. PubMed ID: 32862079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions.
    Li JR; Tran TN; Nguyen VD
    NMR Biomed; 2020 Oct; 33(10):e4353. PubMed ID: 32725935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal.
    Li JR; Nguyen HT; Nguyen DV; Haddar H; Coatléven J; Le Bihan D
    J Magn Reson; 2014 Nov; 248():54-65. PubMed ID: 25314082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpinDoctor: A MATLAB toolbox for diffusion MRI simulation.
    Li JR; Nguyen VD; Tran TN; Valdman J; Trang CB; Nguyen KV; Vu DTS; Tran HA; Tran HTA; Nguyen TMP
    Neuroimage; 2019 Nov; 202():116120. PubMed ID: 31470126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module.
    Fang C; Nguyen VD; Wassermann D; Li JR
    Neuroimage; 2020 Nov; 222():117198. PubMed ID: 32730957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces.
    Agdestein SD; Tran TN; Li JR
    NMR Biomed; 2022 Mar; 35(3):e4646. PubMed ID: 34796990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The derivation of homogenized diffusion kurtosis models for diffusion MRI.
    Haddar H; Kchaou M; Moakher M
    J Magn Reson; 2019 Jan; 298():48-57. PubMed ID: 30529049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.
    Awojoyogbe BO; Dada MO; Onwu SO; Ige TA; Akinwande NI
    J Med Syst; 2016 Apr; 40(4):106. PubMed ID: 26892456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating interface permeability into the diffusion MRI signal representation while using impermeable Laplace eigenfunctions.
    Yang Z; Fang C; Li JR
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37579758
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging.
    Mekkaoui I; Moulin K; Croisille P; Pousin J; Viallon M
    Phys Med Biol; 2016 Aug; 61(15):5662-86. PubMed ID: 27385441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring diffusion across permeable barriers at high gradients. II. Localization regime.
    Grebenkov DS
    J Magn Reson; 2014 Nov; 248():164-76. PubMed ID: 25266755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation.
    Magin RL; Abdullah O; Baleanu D; Zhou XJ
    J Magn Reson; 2008 Feb; 190(2):255-70. PubMed ID: 18065249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic interpretation and generalization of the Bloch-Torrey equation for diffusion magnetic resonance.
    Seroussi I; Grebenkov DS; Pasternak O; Sochen N
    J Magn Reson; 2017 Apr; 277():95-103. PubMed ID: 28242566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin dephasing in the dipole field around capillaries and cells: numerical solution.
    Ziener CH; Glutsch S; Jakob PM; Bauer WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046701. PubMed ID: 19905476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion MRI simulation in thin-layer and thin-tube media using a discretization on manifolds.
    Nguyen VD; Jansson J; Tran HTA; Hoffman J; Li JR
    J Magn Reson; 2019 Feb; 299():176-187. PubMed ID: 30641268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method.
    Li JR; Calhoun D; Poupon C; Le Bihan D
    Phys Med Biol; 2014 Jan; 59(2):441-54. PubMed ID: 24351275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation.
    Grebenkov DS; Nguyen DV; Li JR
    J Magn Reson; 2014 Nov; 248():153-63. PubMed ID: 25239556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion.
    Hanyga A; Seredyńska M
    J Magn Reson; 2012 Jul; 220():85-93. PubMed ID: 22706028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
    Yin Z; Magin RL; Klatt D
    Magn Reson Med; 2014 May; 71(5):1682-8. PubMed ID: 24648402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.