These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32862292)

  • 1. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells.
    Kihira K; Chelakkot VS; Kainuma H; Okumura Y; Tsuboya N; Okamura S; Kurihara K; Iwamoto S; Komada Y; Hori H
    Int J Hematol; 2020 Dec; 112(6):795-806. PubMed ID: 32862292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells.
    Iwasa M; Miura Y; Fujishiro A; Fujii S; Sugino N; Yoshioka S; Yokota A; Hishita T; Hirai H; Andoh A; Ichinohe T; Maekawa T
    Int J Hematol; 2017 May; 105(5):587-597. PubMed ID: 28044259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric analysis of intercellular adhesion between B-cell precursor acute lymphoblastic leukemic cells and bone marrow stromal cells.
    Ashley DM; Bol SJ; Tucker DP; Waugh CM; Kannourakis G
    Leukemia; 1995 Jan; 9(1):58-67. PubMed ID: 7845030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: a study of five cases controlled by genetic methods.
    Dworzak MN; Stolz F; Fröschl G; Printz D; Henn T; Fischer S; Fleischer C; Haas OA; Fritsch G; Gadner H; Panzer-Grümayer ER
    Exp Hematol; 1999 Apr; 27(4):673-81. PubMed ID: 10210325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming Microenvironment-Mediated Chemoprotection through Stromal Galectin-3 Inhibition in Acute Lymphoblastic Leukemia.
    Tarighat SS; Fei F; Joo EJ; Abdel-Azim H; Yang L; Geng H; Bum-Erdene K; Grice ID; von Itzstein M; Blanchard H; Heisterkamp N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/β response in bone marrow-derived mesenchymal stroma.
    Smeets MWE; Steeghs EMP; Orsel J; Stalpers F; Vermeeren MMP; Veltman CHJ; Slenders L; Nierkens S; Van de Ven C; Den Boer ML
    Haematologica; 2024 Jul; 109(7):2073-2084. PubMed ID: 38426282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-Derived Bone Marrow Spheroids Reveal Leukemia-Initiating Cells Supported by Mesenchymal Hypoxic Niches in Pediatric B-ALL.
    Balandrán JC; Dávila-Velderrain J; Sandoval-Cabrera A; Zamora-Herrera G; Terán-Cerqueda V; García-Stivalet LA; Limón-Flores JA; Armenta-Castro E; Rodríguez-Martínez A; Leon-Chavez BA; Vallejo-Ruiz V; Hassane DC; Pérez-Tapia SM; Ortiz-Navarrete V; Guzman ML; Pelayo R
    Front Immunol; 2021; 12():746492. PubMed ID: 34737747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome.
    Oliveira E; Costa ES; Ciudad J; Gaipa G; Sedek Ł; Barrena S; Szczepanski T; Buracchi C; Silvestri D; Siqueira PFR; Mello FV; Torres RC; Oliveira LMR; Fay-Neves IVC; Sonneveld E; van der Velden VHJ; Mejstrikova E; Ribera JM; Conter V; Schrappe M; van Dongen JJM; Land MGP; Orfao A;
    Cancers (Basel); 2022 Jun; 14(13):. PubMed ID: 35804860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia.
    Pan C; Liu P; Ma D; Zhang S; Ni M; Fang Q; Wang J
    Biomed Pharmacother; 2020 Oct; 130():110610. PubMed ID: 34321159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL.
    van der Velden VH; Jacobs DC; Wijkhuijs AJ; Comans-Bitter WM; Willemse MJ; Hählen K; Kamps WA; van Wering ER; van Dongen JJ
    Leukemia; 2002 Aug; 16(8):1432-6. PubMed ID: 12145681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stromal cells derived from the bone marrow of acute lymphoblastic leukemia patients show altered BMP4 production: correlations with the course of disease.
    Vicente López Á; Vázquez García MN; Melen GJ; Entrena Martínez A; Cubillo Moreno I; García-Castro J; Orellana MR; González AG
    PLoS One; 2014; 9(1):e84496. PubMed ID: 24400095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment.
    Polak R; de Rooij B; Pieters R; den Boer ML
    Blood; 2015 Nov; 126(21):2404-14. PubMed ID: 26297738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ActivinA: a new leukemia-promoting factor conferring migratory advantage to B-cell precursor-acute lymphoblastic leukemic cells.
    Portale F; Cricrì G; Bresolin S; Lupi M; Gaspari S; Silvestri D; Russo B; Marino N; Ubezio P; Pagni F; Vergani P; Kronnie GT; Valsecchi MG; Locatelli F; Rizzari C; Biondi A; Dander E; D'Amico G
    Haematologica; 2019 Mar; 104(3):533-545. PubMed ID: 30262563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: method and significance.
    Dworzak MN; Fritsch G; Panzer-Grümayer ER; Mann G; Gadner H
    Leuk Lymphoma; 2000 Jul; 38(3-4):295-308. PubMed ID: 10830736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia.
    Veltroni M; De Zen L; Sanzari MC; Maglia O; Dworzak MN; Ratei R; Biondi A; Basso G; Gaipa G;
    Haematologica; 2003 Nov; 88(11):1245-52. PubMed ID: 14607753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference of bone marrow CD56
    Theodorakos I; Paterakis G; Papadakis V; Vicha A; Topakas G; Jencova P; Karchilaki E; Taparkou A; Tsagarakis NJ; Polychronopoulou S
    Pediatr Blood Cancer; 2019 Aug; 66(8):e27799. PubMed ID: 31066205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Flow cytometric detection of minimal residual disease in pre-cursor-B-acute lymphoblastic leukemia on the basis of phenotypic aberrancies on minor leukemic cell populations].
    Wu M; Sun XF; Xu ZM; Zhang XY; Li FR; Wang XG; Chen XL; Lin HQ; Wen HG; Sun X; Song TW
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Aug; 13(4):557-62. PubMed ID: 16129033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viable bone marrow stromal cells are required for the in vitro survival of B-cell precursor acute lymphoblastic leukemic cells.
    Ashley DM; Bol SJ; Kannourakis G
    Leuk Res; 1995 Feb; 19(2):113-20. PubMed ID: 7869739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment.
    Vernot JP; Bonilla X; Rodriguez-Pardo V; Vanegas NP
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunophenotypic shift in the B-cell precursors from regenerating bone marrow samples: A critical consideration for measurable residual disease assessment in B-lymphoblastic leukemia.
    Chatterjee G; Sriram H; Ghogale S; Deshpande N; Khanka T; Panda D; Pradhan SN; Girase K; Narula G; Dhamane C; Malik NR; Banavali S; Patkar NV; Gujral S; Subramanian PG; Tembhare PR
    Cytometry B Clin Cytom; 2021 Jul; 100(4):434-445. PubMed ID: 32896101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.