These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32862715)

  • 1. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study.
    Chen W; Zhang Y; Yang S; Sun J; Qiu H; Hu X; Niu X; Xiao Z; Zhao Y; Zhou Y; Dai J; Chu T
    Cell Transplant; 2020; 29():963689720950637. PubMed ID: 32862715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells.
    Xiao Z; Tang F; Zhao Y; Han G; Yin N; Li X; Chen B; Han S; Jiang X; Yun C; Zhao C; Cheng S; Zhang S; Dai J
    Cell Transplant; 2018 Jun; 27(6):907-915. PubMed ID: 29871514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients.
    Xiao Z; Tang F; Tang J; Yang H; Zhao Y; Chen B; Han S; Wang N; Li X; Cheng S; Han G; Zhao C; Yang X; Chen Y; Shi Q; Hou S; Zhang S; Dai J
    Sci China Life Sci; 2016 Jul; 59(7):647-55. PubMed ID: 27333785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury.
    Zhao Y; Tang F; Xiao Z; Han G; Wang N; Yin N; Chen B; Jiang X; Yun C; Han W; Zhao C; Cheng S; Zhang S; Dai J
    Cell Transplant; 2017 May; 26(5):891-900. PubMed ID: 28185615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury.
    Li X; Tan J; Xiao Z; Zhao Y; Han S; Liu D; Yin W; Li J; Li J; Wanggou S; Chen B; Ren C; Jiang X; Dai J
    Sci Rep; 2017 Mar; 7():43559. PubMed ID: 28262732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury.
    Syková E; Homola A; Mazanec R; Lachmann H; Konrádová SL; Kobylka P; Pádr R; Neuwirth J; Komrska V; Vávra V; Stulík J; Bojar M
    Cell Transplant; 2006; 15(8-9):675-87. PubMed ID: 17269439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair.
    Syková E; Jendelová P; Urdzíková L; Lesný P; Hejcl A
    Cell Mol Neurobiol; 2006; 26(7-8):1113-29. PubMed ID: 16633897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold.
    Tang F; Tang J; Zhao Y; Zhang J; Xiao Z; Chen B; Han G; Yin N; Jiang X; Zhao C; Cheng S; Wang Z; Chen Y; Chen Q; Song K; Zhang Z; Niu J; Wang L; Shi Q; Chen L; Yang H; Hou S; Zhang S; Dai J
    Sci China Life Sci; 2022 May; 65(5):909-926. PubMed ID: 34406569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients.
    El-Kheir WA; Gabr H; Awad MR; Ghannam O; Barakat Y; Farghali HA; El Maadawi ZM; Ewes I; Sabaawy HE
    Cell Transplant; 2014 Apr; 23(6):729-45. PubMed ID: 23452836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury.
    Gabr H; El-Kheir WA; Farghali HA; Ismail ZM; Zickri MB; El Maadawi ZM; Kishk NA; Sabaawy HE
    Cell Transplant; 2015; 24(9):1813-27. PubMed ID: 25199146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes.
    Oraee-Yazdani S; Akhlaghpasand M; Golmohammadi M; Hafizi M; Zomorrod MS; Kabir NM; Oraee-Yazdani M; Ashrafi F; Zali A; Soleimani M
    Stem Cell Res Ther; 2021 Aug; 12(1):445. PubMed ID: 34372939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells.
    Attar A; Ayten M; Ozdemir M; Ozgencil E; Bozkurt M; Kaptanoglu E; Beksac M; Kanpolat Y
    Cytotherapy; 2011 Jan; 13(1):54-60. PubMed ID: 20735163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats.
    Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D
    J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autologous Bone Marrow-Derived Stem Cells in Spinal Cord Injury.
    Bansal H; Verma P; Agrawal A; Leon J; Sundell IB; Koka PS
    J Stem Cells; 2016; 11(1):51-61. PubMed ID: 28296864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Review of the regeneration mechanism of complete spinal cord injury].
    Li J; Li X; Xiao Z; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):641-649. PubMed ID: 29905039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of completely transected spinal cord using scaffold of poly(D,L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells.
    Kang KN; Lee JY; Kim DY; Lee BN; Ahn HH; Lee B; Khang G; Park SR; Min BH; Kim JH; Lee HB; Kim MS
    Tissue Eng Part A; 2011 Sep; 17(17-18):2143-52. PubMed ID: 21529281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis.
    Yousefifard M; Nasseri Maleki S; Askarian-Amiri S; Vaccaro AR; Chapman JR; Fehlings MG; Hosseini M; Rahimi-Movaghar V
    J Neurosurg Spine; 2020 Feb; 32(2):269-284. PubMed ID: 31675724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autologous bone marrow mononuclear cell transplant and surgical decompression in a dog with chronic spinal cord injury.
    Tamura K; Harada Y; Kunimi M; Takemitsu H; Hara Y; Nakamura T; Tagawa M
    Exp Clin Transplant; 2015 Feb; 13(1):100-5. PubMed ID: 25019162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.