These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3286319)

  • 41. An autophosphorylating but not transphosphorylating activity is associated with the unique N terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit.
    Conner J; Cooper J; Furlong J; Clements JB
    J Virol; 1992 Dec; 66(12):7511-6. PubMed ID: 1331536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specific inhibition of ribonucleotide reductases by peptides corresponding to the C-terminal of their second subunit.
    Cosentino G; Lavallée P; Rakhit S; Plante R; Gaudette Y; Lawetz C; Whitehead PW; Duceppe JS; Lépine-Frenette C; Dansereau N
    Biochem Cell Biol; 1991 Jan; 69(1):79-83. PubMed ID: 2043345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential effect of hydroxyurea on a ribonucleotide reductase system.
    Yeh YC; Tessman I
    J Biol Chem; 1978 Mar; 253(5):1323-4. PubMed ID: 342523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flavodoxin is required for the activation of the anaerobic ribonucleotide reductase.
    Bianchi V; Eliasson R; Fontecave M; Mulliez E; Hoover DM; Matthews RG; Reichard P
    Biochem Biophys Res Commun; 1993 Dec; 197(2):792-7. PubMed ID: 8267617
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New crystal forms of the small subunit of ribonucleotide reductase from Escherichia coli.
    Nordlund P; Uhlin U; Westergren C; Joelsen T; Sjöberg BM; Eklund H
    FEBS Lett; 1989 Dec; 258(2):251-4. PubMed ID: 2689216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.
    Ortenberg R; Gon S; Porat A; Beckwith J
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7439-44. PubMed ID: 15123823
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations in intracellular deoxyribonucleotide levels of mutationally altered ribonucleotide reductases in Escherichia coli.
    Platz A; Karlsson M; Hahne S; Eriksson S; Sjöberg BM
    J Bacteriol; 1985 Dec; 164(3):1194-9. PubMed ID: 3905766
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation, characterization, and complete heteronuclear NMR resonance assignments of the glutaredoxin (C14S)-ribonucleotide reductase B1 737-761 (C754S) mixed disulfide.
    Berardi MJ; Pendred CL; Bushweller JH
    Biochemistry; 1998 Apr; 37(17):5849-57. PubMed ID: 9558318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epitope mapping identifies an exposed loop between the unique amino- and conserved carboxy-domains of the large subunit of herpes simplex virus type 1 ribonucleotide reductase.
    Lankinen H; Everett R; Cross A; Conner J; Marsden HS
    J Gen Virol; 1993 Sep; 74 ( Pt 9)():1871-7. PubMed ID: 7690841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From RNA to DNA, why so many ribonucleotide reductases?
    Reichard P
    Science; 1993 Jun; 260(5115):1773-7. PubMed ID: 8511586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Altered ribonucleotide reductase obtained by in vitro mutagenesis of cloned Escherichia coli DNA.
    Platz A
    Acta Chem Scand B; 1981; 35(2):143-4. PubMed ID: 7025538
    [No Abstract]   [Full Text] [Related]  

  • 52. Requirement of protein synthesis for the induction of ribonucleoside diphosphate reductase mRNA in Escherichia coli.
    Hanke PD; Fuchs JA
    Mol Gen Genet; 1984; 193(2):327-31. PubMed ID: 6363881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A single amino acid substitution in the large subunit of herpes simplex virus type 1 ribonucleotide reductase which prevents subunit association.
    Nikas I; Darling AJ; Lankinen HM; Cross AM; Marsden HS; Clements JB
    J Gen Virol; 1990 Oct; 71 ( Pt 10)():2369-76. PubMed ID: 2172449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The unique N terminus of the herpes simplex virus type 1 large subunit is not required for ribonucleotide reductase activity.
    Conner J; Macfarlane J; Lankinen H; Marsden H
    J Gen Virol; 1992 Jan; 73 ( Pt 1)():103-12. PubMed ID: 1309856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribonucleoside 5'-thiodiphosphates as substrates for Escherichia coli ribonucleotide reductase.
    von Döbeln U; Eckstein F
    Eur J Biochem; 1974 Apr; 43(2):215-20. PubMed ID: 4151721
    [No Abstract]   [Full Text] [Related]  

  • 56. Ribonucleoside diphosphate reductase (Escherichia coli).
    Thelander L; Sjöberg BR; Eriksson S
    Methods Enzymol; 1978; 51():227-37. PubMed ID: 357894
    [No Abstract]   [Full Text] [Related]  

  • 57. Site-directed mutagenesis and deletion of the carboxyl terminus of Escherichia coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction.
    Climent I; Sjöberg BM; Huang CY
    Biochemistry; 1992 May; 31(20):4801-7. PubMed ID: 1591241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction.
    Booker S; Licht S; Broderick J; Stubbe J
    Biochemistry; 1994 Oct; 33(42):12676-85. PubMed ID: 7918494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The redox centers of ribonucleotide reductase of Escherichia coli.
    Fontecave M; Nordlund P; Eklund H; Reichard P
    Adv Enzymol Relat Areas Mol Biol; 1992; 65():147-83. PubMed ID: 1570768
    [No Abstract]   [Full Text] [Related]  

  • 60. Mechanism-based inhibition of a mutant Escherichia coli ribonucleotide reductase (cysteine-225----serine) by its substrate CDP.
    Mao SS; Johnston MI; Bollinger JM; Stubbe J
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1485-9. PubMed ID: 2493643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.