BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32863455)

  • 1. A deep learning-based hybrid approach for the solution of multiphysics problems in electrosurgery.
    Han Z; Rahul ; De S
    Comput Methods Appl Mech Eng; 2019 Dec; 357():. PubMed ID: 32863455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiphysics Model for Radiofrequency Activation of Soft Hydrated Tissues.
    Han Z; Rahul S
    Comput Methods Appl Mech Eng; 2018 Aug; 337():527-548. PubMed ID: 30349148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Newton-Raphson preconditioner for Krylov type solvers on GPU devices.
    Kushida N
    Springerplus; 2016; 5(1):788. PubMed ID: 27386273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis.
    Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D
    Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions.
    Han T; Liu C; Yang W; Jiang D
    ISA Trans; 2019 Oct; 93():341-353. PubMed ID: 30935654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly Supervised Learning of 3D Deep Network for Neuron Reconstruction.
    Huang Q; Chen Y; Liu S; Xu C; Cao T; Xu Y; Wang X; Rao G; Li A; Zeng S; Quan T
    Front Neuroanat; 2020; 14():38. PubMed ID: 32848636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel CNN-Based Poisson Solver for Fluid Simulation.
    Xiao X; Zhou Y; Wang H; Yang X
    IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1454-1465. PubMed ID: 30281463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems.
    Yin M; Zhang E; Yu Y; Karniadakis GE
    Comput Methods Appl Mech Eng; 2022 Dec; 402():. PubMed ID: 37384215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning.
    Kadeethum T; Ballarin F; O'Malley D; Choi Y; Bouklas N; Yoon H
    Sci Rep; 2022 Nov; 12(1):20654. PubMed ID: 36450820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Order Modeling of Nonlinear Vibrating Multiphysics Microstructures with Deep Learning-Based Approaches.
    Gobat G; Fresca S; Manzoni A; Frangi A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A field-split preconditioning technique for fluid-structure interaction problems with applications in biomechanics.
    Calandrini S; Aulisa E; Ke G
    Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3301. PubMed ID: 31883314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning.
    Hwang D; Kim KY; Kang SK; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2018 Oct; 59(10):1624-1629. PubMed ID: 29449446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications.
    Lauzeral N; Borzacchiello D; Kugler M; George D; Rémond Y; Hostettler A; Chinesta F
    Comput Methods Programs Biomed; 2019 Mar; 170():95-106. PubMed ID: 30712607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.