BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32863484)

  • 1. Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules.
    Chatterjee T; Li Z; Khanna K; Montoya K; Tewari M; Walter NG; Johnson-Buck A
    Trends Analyt Chem; 2020 Feb; 123():. PubMed ID: 32863484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers.
    Mandal S; Li Z; Chatterjee T; Khanna K; Montoya K; Dai L; Petersen C; Li L; Tewari M; Johnson-Buck A; Walter NG
    Acc Chem Res; 2021 Jan; 54(2):388-402. PubMed ID: 33382587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to nucleic acid detection by single-molecule kinetic fingerprinting.
    Johnson-Buck A; Li J; Tewari M; Walter NG
    Methods; 2019 Jan; 153():3-12. PubMed ID: 30099084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attomolar Sensitivity in Single Biomarker Counting upon Aqueous Two-Phase Surface Enrichment.
    Li Z; McNeely M; Sandford E; Tewari M; Johnson-Buck A; Walter NG
    ACS Sens; 2022 May; 7(5):1419-1430. PubMed ID: 35438959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraspecific and Amplification-Free Quantification of Mutant DNA by Single-Molecule Kinetic Fingerprinting.
    Hayward SL; Lund PE; Kang Q; Johnson-Buck A; Tewari M; Walter NG
    J Am Chem Soc; 2018 Sep; 140(37):11755-11762. PubMed ID: 30125495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid kinetic fingerprinting of single nucleic acid molecules by a FRET-based dynamic nanosensor.
    Khanna K; Mandal S; Blanchard AT; Tewari M; Johnson-Buck A; Walter NG
    Biosens Bioelectron; 2021 Oct; 190():113433. PubMed ID: 34171818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic fingerprinting to identify and count single nucleic acids.
    Johnson-Buck A; Su X; Giraldez MD; Zhao M; Tewari M; Walter NG
    Nat Biotechnol; 2015 Jul; 33(7):730-2. PubMed ID: 26098451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide to accelerated direct digital counting of single nucleic acid molecules by FRET-based intramolecular kinetic fingerprinting.
    Mandal S; Khanna K; Johnson-Buck A; Walter NG
    Methods; 2022 Jan; 197():63-73. PubMed ID: 34182140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive protein detection by aptamer-based single-molecule kinetic fingerprinting.
    Chatterjee T; Johnson-Buck A; Walter NG
    Biosens Bioelectron; 2022 Nov; 216():114639. PubMed ID: 36037714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Kinetic Fingerprinting for the Ultrasensitive Detection of Small Molecules with Aptasensors.
    Weng R; Lou S; Li L; Zhang Y; Qiu J; Su X; Qian Y; Walter NG
    Anal Chem; 2019 Jan; 91(2):1424-1431. PubMed ID: 30562003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The real-time polymerase chain reaction.
    Kubista M; Andrade JM; Bengtsson M; Forootan A; Jonák J; Lind K; Sindelka R; Sjöback R; Sjögreen B; Strömbom L; Ståhlberg A; Zoric N
    Mol Aspects Med; 2006; 27(2-3):95-125. PubMed ID: 16460794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation-guided DNA probe design for consistently ultraspecific hybridization.
    Wang JS; Zhang DY
    Nat Chem; 2015 Jul; 7(7):545-53. PubMed ID: 26100802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dumbbell-shaped DNA analytes amplified by polymerase chain reaction for robust single-nucleotide polymorphism genotyping by affinity capillary electrophoresis.
    Shibata H; Ogawa A; Kanayama N; Takarada T; Maeda M
    Anal Chem; 2013 Jun; 85(11):5347-52. PubMed ID: 23659631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current methods for fluorescence-based universal sequence-dependent detection of nucleic acids in homogenous assays and clinical applications.
    Faltin B; Zengerle R; von Stetten F
    Clin Chem; 2013 Nov; 59(11):1567-82. PubMed ID: 23938456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantitative PCR in the diagnosis of Leishmania].
    Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C
    Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation.
    Kerman K; Vestergaard M; Nagatani N; Takamura Y; Tamiya E
    Anal Chem; 2006 Apr; 78(7):2182-9. PubMed ID: 16579596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nucleic acid targets using ramified rolling circle DNA amplification: a single nucleotide polymorphism assay model.
    Smith JH; Beals TP
    PLoS One; 2013; 8(5):e65053. PubMed ID: 23724122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein detection via direct enzymatic amplification of short DNA aptamers.
    Fischer NO; Tarasow TM; Tok JB
    Anal Biochem; 2008 Feb; 373(1):121-8. PubMed ID: 17980857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection.
    Xu J; Shi M; Huang H; Hu K; Chen W; Huang Y; Zhao S
    Analyst; 2018 Aug; 143(16):3918-3925. PubMed ID: 30043777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.