These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32863598)

  • 1. Environmental impact of high-value gold scrap recycling.
    Fritz B; Aichele C; Schmidt M
    Int J Life Cycle Assess; 2020; 25(10):1930-1941. PubMed ID: 32863598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally friendly process instead of cyanide leaching on recycling of gold and silver from jewellery scraps and wastes.
    Aydın ŞB; Gül A
    Waste Manag Res; 2021 Feb; 39(2):233-241. PubMed ID: 32608332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrized regionalization of paper recycling life-cycle assessment.
    Provost-Savard A; Legros R; Majeau-Bettez G
    Waste Manag; 2023 Feb; 156():84-96. PubMed ID: 36446140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable valorization of semiconductor industry tantalum scrap using non-hazardous HF substitute lixiviant.
    Swain B; Lee J; Woo Gu B; Lee CG; Yoon JH
    Waste Manag; 2022 May; 144():294-302. PubMed ID: 35427901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.
    Lamnatou C; Motte F; Notton G; Chemisana D; Cristofari C
    J Environ Manage; 2018 Apr; 212():301-310. PubMed ID: 29453115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the Global Warming Mitigation Potential from Recycling Subway-Related Excavated Soil and Rock in China Via Life Cycle Assessment.
    Zhang N; Zhang H; Schiller G; Feng H; Gao X; Li E; Li X
    Integr Environ Assess Manag; 2021 May; 17(3):639-650. PubMed ID: 33241889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.
    Ceballos DM; Gong W; Page E
    J Occup Environ Hyg; 2015; 12(7):482-8. PubMed ID: 25738822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources.
    Lamnatou C; Smyth M; Chemisana D
    Sci Total Environ; 2019 Apr; 660():1576-1592. PubMed ID: 30743949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Predicting the Recycling Potential and Evaluating the Environmental Benefits of Waste Electrical and Electronic Equipment in Beijing-Tianjin-Hebei].
    Chen P; Shi XQ
    Huan Jing Ke Xue; 2020 Apr; 41(4):1976-1986. PubMed ID: 32608707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury-impacted scrap metal: Source and nature of the mercury.
    Finster ME; Raymond MR; Scofield MA; Smith KP
    J Environ Manage; 2015 Sep; 161():303-308. PubMed ID: 26197424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.
    Cimpan C; Rothmann M; Hamelin L; Wenzel H
    J Environ Manage; 2015 Jul; 157():69-83. PubMed ID: 25884890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.
    Liang S; Zhang T; Xu Y
    Waste Manag; 2012 Mar; 32(3):603-12. PubMed ID: 22100716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the environmental impact of gold production from double refractory ore in a large-scale facility.
    Kadivar S; Akbari H; Vahidi E
    Sci Total Environ; 2023 Dec; 905():167841. PubMed ID: 37848149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [System Concept of Production Design and Development in Scrap and Metal Recycling].
    Kraffczyk T; Pomberger R
    Berg Huttenmannische Monatshefte; 2021; 166(3):125-130. PubMed ID: 33746231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.