These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32863885)
1. Deep learning-based ovarian cancer subtypes identification using multi-omics data. Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF BioData Min; 2020; 13():10. PubMed ID: 32863885 [TBL] [Abstract][Full Text] [Related]
2. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder. Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028 [TBL] [Abstract][Full Text] [Related]
3. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
4. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma. Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824 [TBL] [Abstract][Full Text] [Related]
5. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
6. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping. Zhu S; Wang W; Fang W; Cui M Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Zhang L; Lv C; Jin Y; Cheng G; Fu Y; Yuan D; Tao Y; Guo Y; Ni X; Shi T Front Genet; 2018; 9():477. PubMed ID: 30405689 [TBL] [Abstract][Full Text] [Related]
8. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895 [TBL] [Abstract][Full Text] [Related]
9. MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism. Zhang G; Peng Z; Yan C; Wang J; Luo J; Luo H Front Genet; 2022; 13():855629. PubMed ID: 35391797 [TBL] [Abstract][Full Text] [Related]
10. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes. Ji Y; Dutta P; Davuluri R Bioinform Adv; 2023; 3(1):vbad075. PubMed ID: 37424943 [TBL] [Abstract][Full Text] [Related]
11. Integrated multi-omics analysis of ovarian cancer using variational autoencoders. Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557 [TBL] [Abstract][Full Text] [Related]
12. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
13. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
14. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). Ma T; Zhang A BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727 [TBL] [Abstract][Full Text] [Related]
15. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. Munquad S; Das AB BioData Min; 2023 Nov; 16(1):32. PubMed ID: 37968655 [TBL] [Abstract][Full Text] [Related]
16. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data. Zhang C; Chen Y; Zeng T; Zhang C; Chen L Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777 [TBL] [Abstract][Full Text] [Related]
17. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
18. A denoised multi-omics integration framework for cancer subtype classification and survival prediction. Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302 [TBL] [Abstract][Full Text] [Related]
19. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. Tong L; Mitchel J; Chatlin K; Wang MD BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515 [TBL] [Abstract][Full Text] [Related]
20. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]