These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32863885)

  • 21. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer subtype identification by multi-omics clustering based on interpretable feature and latent subspace learning.
    Shi T; Ye X; Huang D; Sakurai T
    Methods; 2024 Nov; 231():144-153. PubMed ID: 39326482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.
    Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L
    Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subtype-WESLR: identifying cancer subtype with weighted ensemble sparse latent representation of multi-view data.
    Song W; Wang W; Dai DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34607358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrative deep learning framework for classifying molecular subtypes of breast cancer.
    Mohaiminul Islam M; Huang S; Ajwad R; Chi C; Wang Y; Hu P
    Comput Struct Biotechnol J; 2020; 18():2185-2199. PubMed ID: 32952934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.
    Choi JM; Park C; Chae H
    PeerJ; 2024; 12():e17006. PubMed ID: 38426141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.
    Chai H; Deng W; Wei J; Guan T; He M; Liang Y; Li L
    Interdiscip Sci; 2024 Dec; 16(4):966-975. PubMed ID: 39230797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes.
    Liu Q; Song K
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition.
    Sun Q; Cheng L; Meng A; Ge S; Chen J; Zhang L; Gong P
    Front Genet; 2022; 13():1032768. PubMed ID: 36685873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Representation Learning for the Clustering of Multi-Omics Data.
    Viaud G; Mayilvahanan P; Cournede PH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):135-145. PubMed ID: 33600320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer.
    Wei Z; Han D; Zhang C; Wang S; Liu J; Chao F; Song Z; Chen G
    Front Oncol; 2022; 12():893424. PubMed ID: 35814412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.
    Seal DB; Das V; Goswami S; De RK
    Genomics; 2020 Jul; 112(4):2833-2841. PubMed ID: 32234433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial intelligence in ovarian cancer drug resistance advanced 3PM approach: subtype classification and prognostic modeling.
    Zhang C; Yang J; Chen S; Sun L; Li K; Lai G; Peng B; Zhong X; Xie B
    EPMA J; 2024 Sep; 15(3):525-544. PubMed ID: 39239109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.