These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32864133)

  • 1. Habitat complexity influences selection of thermal environment in a common coral reef fish.
    Nay TJ; Johansen JL; Rummer JL; Steffensen JF; Pratchett MS; Hoey AS
    Conserv Physiol; 2020; 8(1):coaa070. PubMed ID: 32864133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species interactions alter the selection of thermal environment in a coral reef fish.
    Nay TJ; Johansen JL; Rummer JL; Steffensen JF; Hoey AS
    Oecologia; 2021 Jun; 196(2):363-371. PubMed ID: 34036440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL
    Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.
    Rummer JL; Couturier CS; Stecyk JA; Gardiner NM; Kinch JP; Nilsson GE; Munday PL
    Glob Chang Biol; 2014 Apr; 20(4):1055-66. PubMed ID: 24281840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum.
    Nay TJ; Longbottom RJ; Gervais CR; Johansen JL; Steffensen JF; Rummer JL; Hoey AS
    J Fish Biol; 2021 Mar; 98(3):723-732. PubMed ID: 33206373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean?
    Matis PA; Donelson JM; Bush S; Fox RJ; Booth DJ
    Glob Chang Biol; 2018 Jul; 24(7):3158-3169. PubMed ID: 29658157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
    Munday PL; McCormick MI; Nilsson GE
    J Exp Biol; 2012 Nov; 215(Pt 22):3865-73. PubMed ID: 23100485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic response to thermal stress across ontogeny and habitats in a teleost fish.
    Schneider EVC; Zuckerman ZC; Talwar BS; Cooke SJ; Shultz AD; Suski CD
    J Fish Biol; 2023 Aug; 103(2):336-346. PubMed ID: 37178385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular plasticity to ocean warming and habitat loss in a coral reef fish.
    Swank AR; Tracy CB; Mendonça MT; Bernal MA
    J Hered; 2024 Apr; ():. PubMed ID: 38651326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes.
    Mitchell A; Hayes C; Booth DJ; Nagelkerken I
    Sci Total Environ; 2023 Jul; 883():163684. PubMed ID: 37100135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss.
    Pratchett MS; Coker DJ; Jones GP; Munday PL
    Ecol Evol; 2012 Sep; 2(9):2168-80. PubMed ID: 23139876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.
    Johansen JL; Messmer V; Coker DJ; Hoey AS; Pratchett MS
    Glob Chang Biol; 2014 Apr; 20(4):1067-74. PubMed ID: 24277276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters.
    Kingsbury KM; Gillanders BM; Booth DJ; Coni EOC; Nagelkerken I
    Sci Total Environ; 2020 Feb; 703():134598. PubMed ID: 31767323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reef-coral refugia in a rapidly changing ocean.
    Cacciapaglia C; van Woesik R
    Glob Chang Biol; 2015 Jun; 21(6):2272-82. PubMed ID: 25646684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate-change refugia: shading reef corals by turbidity.
    Cacciapaglia C; van Woesik R
    Glob Chang Biol; 2016 Mar; 22(3):1145-54. PubMed ID: 26695523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish.
    Bernal MA; Donelson JM; Veilleux HD; Ryu T; Munday PL; Ravasi T
    Mol Ecol; 2018 Nov; 27(22):4516-4528. PubMed ID: 30267545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures.
    Gardiner NM; Munday PL; Nilsson GE
    PLoS One; 2010 Oct; 5(10):e13299. PubMed ID: 20949020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved fatty acid profiles and lipid metabolic pathways in a tropical reef fish exposed to ocean warming - An adaptation mechanism of tolerant species?
    Madeira C; Madeira D; Ladd N; Schubert CJ; Diniz MS; Vinagre C; Leal MC
    Sci Total Environ; 2021 Aug; 782():146738. PubMed ID: 33836377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of architectural complexity on coral reefs under climate change.
    Bozec YM; Alvarez-Filip L; Mumby PJ
    Glob Chang Biol; 2015 Jan; 21(1):223-35. PubMed ID: 25099220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reef flattening effects on total richness and species responses in the Caribbean.
    Newman SP; Meesters EH; Dryden CS; Williams SM; Sanchez C; Mumby PJ; Polunin NV
    J Anim Ecol; 2015 Nov; 84(6):1678-89. PubMed ID: 26344713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.