These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32864348)

  • 1. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Addit Manuf; 2020 Jan; 31():. PubMed ID: 32864348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing high-temperature oxidation-resistant titanium matrix composites via directed energy deposition-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Mater Des; 2021 Dec; 212():. PubMed ID: 34898792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diamond-reinforced cutting tools using laser-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Addit Manuf; 2021 Jan; 37():. PubMed ID: 33718005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.
    Das M; Bhattacharya K; Dittrick SA; Mandal C; Balla VK; Sampath Kumar TS; Bandyopadhyay A; Manna I
    J Mech Behav Biomed Mater; 2014 Jan; 29():259-71. PubMed ID: 24121827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and Mechanical Properties of Core-Shell B
    Xiu Z; Ju B; Zhan J; Zhang N; Wang P; Zhao K; Liu M; Yin A; Chen W; Jiao Y; Wang H; Li S; Zhu X; Wu P; Yang W
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of TiC-MMCs Reinforcements in Cast Ferrous Alloys Using In Situ Methods.
    Moreira AB; Ribeiro LMM; Vieira MF
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of boron nitride reinforcement to improve high temperature oxidation resistance of titanium.
    Avila JD; Bandyopadhyay A
    J Mater Res; 2019 Apr; 34(7):1279-1289. PubMed ID: 31406396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Thermal Properties Anisotropy on Subtractive Laser Processing of B
    Rutkowski P; Gala K; Misiura K; Huebner J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and Characterization of β Titanium Alloy Composite Using Power Metallurgy Approach.
    Zyguła K; Wojtaszek M
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sintering Temperatures, Reinforcement Size on Mechanical Properties and Fortification Mechanisms on the Particle Size Distribution of B
    Gemeda BA; Sinha DK; Singh GK; Alghtani AH; Tirth V; Algahtani A; Mengesha GA; Ahmed GMS; Hossain N
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting.
    Antanasova M; Kocjan A; Hočevar M; Jevnikar P
    J Prosthet Dent; 2020 Mar; 123(3):491-499. PubMed ID: 31307799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites.
    Huang L; An Q; Geng L; Wang S; Jiang S; Cui X; Zhang R; Sun F; Jiao Y; Chen X; Wang C
    Adv Mater; 2021 Feb; 33(6):e2000688. PubMed ID: 32705727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired, Multiscale Reinforced Composites with Exceptionally High Strength and Toughness.
    Song N; Zhang Y; Gao Z; Li X
    Nano Lett; 2018 Sep; 18(9):5812-5820. PubMed ID: 30088938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion and tribocorrosion behavior of Ti-B4C composite intended for orthopaedic implants.
    Toptan F; Rego A; Alves AC; Guedes A
    J Mech Behav Biomed Mater; 2016 Aug; 61():152-163. PubMed ID: 26866451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data related to influence of process parameters on the microstructure, structural and mechanical properties of additive manufactured titanium alloy composites.
    Mekonnen YT; Mekonen EA; Fatoba O
    Data Brief; 2022 Jun; 42():108181. PubMed ID: 35539030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti-Al-B alloy.
    Cui G; Liu Y; Gao G; Liu H; Li S; Kou Z
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31739472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.
    Wu F; Chen T; Wang H; Liu D
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28878190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure Evolution and Mechanical Properties of Needle-like ZrB
    Lv X; Zhan Z; Cao H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser processing of in situ TiN/Ti composite coating on titanium.
    Sahasrabudhe H; Soderlind J; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2016 Jan; 53():239-249. PubMed ID: 26344856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications.
    Sahasrabudhe H; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2018 Sep; 85():1-11. PubMed ID: 29803765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.