These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32864518)

  • 1. Intestinal Microbiome and Metal Toxicity.
    Assefa S; Köhler G
    Curr Opin Toxicol; 2020 Feb; 19():21-27. PubMed ID: 32864518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity.
    Arun KB; Madhavan A; Sindhu R; Emmanual S; Binod P; Pugazhendhi A; Sirohi R; Reshmy R; Awasthi MK; Gnansounou E; Pandey A
    J Hazard Mater; 2021 Oct; 420():126676. PubMed ID: 34329091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to toxic metals triggers unique responses from the rat gut microbiota.
    Richardson JB; Dancy BCR; Horton CL; Lee YS; Madejczyk MS; Xu ZZ; Ackermann G; Humphrey G; Palacios G; Knight R; Lewis JA
    Sci Rep; 2018 Apr; 8(1):6578. PubMed ID: 29700420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei.
    Zhang W; Guo R; Yang Y; Ding J; Zhang Y
    Toxicol Lett; 2016 Sep; 258():192-197. PubMed ID: 27392436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Heavy Metal Toxicity on the Gut Microbiota and Its Relationship with Metabolites and Future Probiotics Strategy: a Review.
    Bist P; Choudhary S
    Biol Trace Elem Res; 2022 Dec; 200(12):5328-5350. PubMed ID: 34994948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy.
    Duan H; Yu L; Tian F; Zhai Q; Fan L; Chen W
    Sci Total Environ; 2020 Nov; 742():140429. PubMed ID: 32629250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures.
    Rosenfeld CS
    Front Cell Infect Microbiol; 2017; 7():396. PubMed ID: 28936425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
    Stecher B
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of the Human Microbiome in Chemical Toxicity.
    Koontz JM; Dancy BCR; Horton CL; Stallings JD; DiVito VT; Lewis JA
    Int J Toxicol; 2019; 38(4):251-264. PubMed ID: 31220972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut-Brain Axis.
    Singh S; Sharma P; Pal N; Kumawat M; Shubham S; Sarma DK; Tiwari RR; Kumar M; Nagpal R
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health.
    Elmassry MM; Zayed A; Farag MA
    Crit Rev Food Sci Nutr; 2022; 62(3):738-763. PubMed ID: 33063532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome.
    Breton J; Massart S; Vandamme P; De Brandt E; Pot B; Foligné B
    BMC Pharmacol Toxicol; 2013 Dec; 14():62. PubMed ID: 24325943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alzheimer's Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway.
    Haran JP; Bhattarai SK; Foley SE; Dutta P; Ward DV; Bucci V; McCormick BA
    mBio; 2019 May; 10(3):. PubMed ID: 31064831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome.
    Chi L; Bian X; Gao B; Tu P; Ru H; Lu K
    Toxicol Sci; 2017 Dec; 160(2):193-204. PubMed ID: 28973555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysbiosis of the intestinal microbiota in neurocritically ill patients and the risk for death.
    Xu R; Tan C; Zhu J; Zeng X; Gao X; Wu Q; Chen Q; Wang H; Zhou H; He Y; Pan S; Yin J
    Crit Care; 2019 May; 23(1):195. PubMed ID: 31151471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of metagenomics in the human gut microbiome.
    Wang WL; Xu SY; Ren ZG; Tao L; Jiang JW; Zheng SS
    World J Gastroenterol; 2015 Jan; 21(3):803-14. PubMed ID: 25624713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs).
    Ratajczak W; Rył A; Mizerski A; Walczakiewicz K; Sipak O; Laszczyńska M
    Acta Biochim Pol; 2019 Mar; 66(1):1-12. PubMed ID: 30831575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gut microbiome and epilepsy.
    Dahlin M; Prast-Nielsen S
    EBioMedicine; 2019 Jun; 44():741-746. PubMed ID: 31160269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke.
    Singh V; Roth S; Llovera G; Sadler R; Garzetti D; Stecher B; Dichgans M; Liesz A
    J Neurosci; 2016 Jul; 36(28):7428-40. PubMed ID: 27413153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to Arsenite in CD-1 Mice during Juvenile and Adult Stages: Effects on Intestinal Microbiota and Gut-Associated Immune Status.
    Gokulan K; Arnold MG; Jensen J; Vanlandingham M; Twaddle NC; Doerge DR; Cerniglia CE; Khare S
    mBio; 2018 Aug; 9(4):. PubMed ID: 30108172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.