BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32864622)

  • 1. Patterned Surface Energy in Elastomeric Molds as a Generalized Approach to Polymer Particle Fabrication.
    Oberdick SD; Zabow G
    ACS Appl Polym Mater; 2020; 2(2):. PubMed ID: 32864622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting.
    Ke X; Tang J
    Chemphyschem; 2013 Apr; 14(5):946-51. PubMed ID: 23436571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds.
    Bernardeschi I; Tricinci O; Mattoli V; Filippeschi C; Mazzolai B; Beccai L
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25019-23. PubMed ID: 27606899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues.
    Munarin F; Kaiser NJ; Kim TY; Choi BR; Coulombe KLK
    Tissue Eng Part C Methods; 2017 May; 23(5):311-321. PubMed ID: 28457187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics.
    Li Y; Lai SHS; Liu N; Zhang G; Liu L; Lee GB; Li WJ
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution soft lithography of thin film resists enabling nanoscopic pattern transfer.
    Moran IW; Cheng DF; Jhaveri SB; Carter KR
    Soft Matter; 2007 Dec; 4(1):168-176. PubMed ID: 32907097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials.
    Rolland JP; Maynor BW; Euliss LE; Exner AE; Denison GM; DeSimone JM
    J Am Chem Soc; 2005 Jul; 127(28):10096-100. PubMed ID: 16011375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds.
    Hirama H; Odera T; Torii T; Moriguchi H
    Biomed Microdevices; 2012 Aug; 14(4):689-97. PubMed ID: 22450656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation.
    LeValley PJ; Noren B; Kharkar PM; Kloxin AM; Gatlin JC; Oakey JS
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3078-3087. PubMed ID: 31984222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography.
    Lee NY
    Colloids Surf B Biointerfaces; 2013 Nov; 111():313-20. PubMed ID: 23838198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture.
    McNulty JD; Marti-Figueroa C; Seipel F; Plantz JZ; Ellingham T; Duddleston LJL; Goris S; Cox BL; Osswald TA; Turng LS; Ashton RS
    Acta Biomater; 2019 Sep; 95():258-268. PubMed ID: 31028908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity.
    Kim HU; Lim YJ; Lee HJ; Lee NJ; Bong KW
    Lab Chip; 2020 Jan; 20(1):74-83. PubMed ID: 31746885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple route to morphology-controlled polydimethylsiloxane films based on particle-embedded elastomeric masters for enhanced superhydrophobicity.
    Jeong DW; Kim SJ; Park JK; Kim SH; Lee DW; Kim JM
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2770-6. PubMed ID: 24456274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polyferroplatinyne precursor for the rapid fabrication of L1(0) -FePt-type bit patterned media by nanoimprint lithography.
    Dong Q; Li G; Ho CL; Faisal M; Leung CW; Pong PW; Liu K; Tang BZ; Manners I; Wong WY
    Adv Mater; 2012 Feb; 24(8):1034-40. PubMed ID: 22290721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lyophilized gelatin-norbornene cryogel size on calvarial bone regeneration.
    Kim B; Lee B; Mandakhbayar N; Kim Y; Song Y; Doh J; Lee JH; Jeong B; Song KH
    Mater Today Bio; 2023 Dec; 23():100868. PubMed ID: 38075253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.