These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32864764)

  • 1. Optomechanically Actuated Microcilia for Locally Reconfigurable Surfaces.
    Li M; Kim T; Guidetti G; Wang Y; Omenetto FG
    Adv Mater; 2020 Oct; 32(40):e2004147. PubMed ID: 32864764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Untethered microgripper-the dexterous hand at microscale.
    Yin C; Wei F; Zhan Z; Zheng J; Yao L; Yang W; Li M
    Biomed Microdevices; 2019 Aug; 21(4):82. PubMed ID: 31418070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired soft microrobots actuated by magnetic field.
    Gao Y; Wei F; Chao Y; Yao L
    Biomed Microdevices; 2021 Oct; 23(4):52. PubMed ID: 34599405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets.
    Chen G; Dai Z; Li S; Huang Y; Xu Y; She J; Zhou B
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1754-1765. PubMed ID: 33393309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Microelectronics for Regenerative Neuronal Cuff Implants.
    Karnaushenko D; Münzenrieder N; Karnaushenko DD; Koch B; Meyer AK; Baunack S; Petti L; Tröster G; Makarov D; Schmidt OG
    Adv Mater; 2015 Nov; 27(43):6797-805. PubMed ID: 26397039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation.
    Ben S; Zhou T; Ma H; Yao J; Ning Y; Tian D; Liu K; Jiang L
    Adv Sci (Weinh); 2019 Sep; 6(17):1900834. PubMed ID: 31508285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective beating of artificial microcilia.
    Coq N; Bricard A; Delapierre FD; Malaquin L; du Roure O; Fermigier M; Bartolo D
    Phys Rev Lett; 2011 Jul; 107(1):014501. PubMed ID: 21797546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of a biomimetic polarization selective lens.
    Cannistra AT; Hudgins RA; Suleski TJ
    Opt Lett; 2012 Mar; 37(6):1088-90. PubMed ID: 22446234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles.
    Kang M; Lee D; Bae H; Jeong HE
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55989-55996. PubMed ID: 36503219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability.
    Zhang S; Hu X; Li M; Bozuyuk U; Zhang R; Suadiye E; Han J; Wang F; Onck P; Sitti M
    Sci Adv; 2023 Mar; 9(12):eadf9462. PubMed ID: 36947622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Like Micromotors.
    Esteban-Fernández de Ávila B; Gao W; Karshalev E; Zhang L; Wang J
    Acc Chem Res; 2018 Sep; 51(9):1901-1910. PubMed ID: 30074758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetically actuated artificial cilia: the effect of fluid inertia.
    Khaderi SN; den Toonder JM; Onck PR
    Langmuir; 2012 May; 28(20):7921-37. PubMed ID: 22416971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on microrobots driven by optical and magnetic fields.
    Hou Y; Wang H; Fu R; Wang X; Yu J; Zhang S; Huang Q; Sun Y; Fukuda T
    Lab Chip; 2023 Mar; 23(5):848-868. PubMed ID: 36629004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic manipulation with artificial/bioinspired cilia.
    den Toonder JM; Onck PR
    Trends Biotechnol; 2013 Feb; 31(2):85-91. PubMed ID: 23245658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia.
    Cao M; Jin X; Peng Y; Yu C; Li K; Liu K; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28401597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.