BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32865528)

  • 21. Using native chromatin immunoprecipitation to interrogate histone variant protein deposition in embryonic stem cells.
    Tseng Z; Wu T; Liu Y; Zhong M; Xiao A
    Methods Mol Biol; 2014; 1176():11-22. PubMed ID: 25030915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. aFARP-ChIP-seq, a convenient and reliable method for genome profiling in as few as 100 cells with a capability for multiplexing ChIP-seq.
    Liu W; Yue S; Zheng X; Hu M; Cao J; Zheng Y
    Epigenetics; 2019 Sep; 14(9):877-893. PubMed ID: 31169445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide Analysis of Histone Modifications Distribution using the Chromatin Immunoprecipitation Sequencing Method in Magnaporthe oryzae.
    Wu Z; Sun W; Zhou S; Zhang L; Zhao X; Xu Y; Wang W
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34152322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic Analysis in Ewing Sarcoma.
    Simon JM; Gomez NC
    Methods Mol Biol; 2021; 2226():285-302. PubMed ID: 33326110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ChIP-seq in studying epigenetic mechanisms of disease and promoting precision medicine: progresses and future directions.
    Yan H; Tian S; Slager SL; Sun Z
    Epigenomics; 2016 Sep; 8(9):1239-58. PubMed ID: 27319740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin Immunoprecipitation to Study The Plant Epigenome.
    Xie Z; Presting G
    Methods Mol Biol; 2016; 1429():189-96. PubMed ID: 27511176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linker histone epitopes are hidden by in situ higher-order chromatin structure.
    Teif VB; Gould TJ; Clarkson CT; Boyd L; Antwi EB; Ishaque N; Olins AL; Olins DE
    Epigenetics Chromatin; 2020 Jun; 13(1):26. PubMed ID: 32505195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hyper-activation of transcriptional enhancers in breast cancer.
    Li QL; Wang DY; Ju LG; Yao J; Gao C; Lei PJ; Li LY; Zhao XL; Wu M
    Clin Epigenetics; 2019 Mar; 11(1):48. PubMed ID: 30867030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
    Soyer JL; Möller M; Schotanus K; Connolly LR; Galazka JM; Freitag M; Stukenbrock EH
    Fungal Genet Biol; 2015 Jun; 79():63-70. PubMed ID: 25857259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Assessment of Fixed and Native Chromatin Preparation Methods to Study Histone Post-Translational Modifications at a Whole Genome Scale in Skeletal Muscle Tissue.
    David SA; Piégu B; Hennequet-Antier C; Pannetier M; Aguirre-Lavin T; Crochet S; Bordeau T; Couroussé N; Brionne A; Bigot Y; Collin A; Coustham V
    Biol Proced Online; 2017; 19():10. PubMed ID: 28855851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq).
    Yu M; Juric I; Abnousi A; Hu M; Ren B
    Methods Mol Biol; 2021; 2351():181-199. PubMed ID: 34382190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage Under Targets & Release Using Nuclease (CUT&RUN) of Histone Modifications in Epidermal Stem Cells of Adult Murine Skin.
    Flora P; Ezhkova E
    Methods Mol Biol; 2024; 2736():9-21. PubMed ID: 37615890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient library preparation for next-generation sequencing analysis of genome-wide epigenetic and transcriptional landscapes in embryonic stem cells.
    Kidder BL; Zhao K
    Methods Mol Biol; 2014; 1150():3-20. PubMed ID: 24743988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications.
    Yu Y; Wang Y; Yao Z; Wang Z; Xia Z; Lee J
    Methods Mol Biol; 2023; 2665():95-111. PubMed ID: 37166596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling the Epigenetic Landscape of the Tumor Microenvironment Using Chromatin Immunoprecipitation Sequencing.
    Fukano M; Alzial G; Lambert R; Deblois G
    Methods Mol Biol; 2023; 2614():313-348. PubMed ID: 36587133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions.
    Zheng D; Trynda J; Sun Z; Li Z
    BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome.
    Mammana A; Chung HR
    Genome Biol; 2015 Jul; 16(1):151. PubMed ID: 26206277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles.
    Wang S; Zang C; Xiao T; Fan J; Mei S; Qin Q; Wu Q; Li X; Xu K; He HH; Brown M; Meyer CA; Liu XS
    Genome Res; 2016 Oct; 26(10):1417-1429. PubMed ID: 27466232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A chromatin integration labelling method enables epigenomic profiling with lower input.
    Harada A; Maehara K; Handa T; Arimura Y; Nogami J; Hayashi-Takanaka Y; Shirahige K; Kurumizaka H; Kimura H; Ohkawa Y
    Nat Cell Biol; 2019 Feb; 21(2):287-296. PubMed ID: 30532068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.