These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32865604)

  • 1. Optimal time-varying postural control in a single-link neuromechanical model with feedback latencies.
    Iqbal K
    Biol Cybern; 2020 Oct; 114(4-5):485-497. PubMed ID: 32865604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback.
    Iqbal K; Roy A
    J Biomech Eng; 2004 Dec; 126(6):838-43. PubMed ID: 15796343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance.
    Vette AH; Masani K; Nakazawa K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):86-95. PubMed ID: 20071280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural control model interpretation of stabilogram diffusion analysis.
    Peterka RJ
    Biol Cybern; 2000 Apr; 82(4):335-43. PubMed ID: 10804065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feedback model reproduces muscle activity during human postural responses to support-surface translations.
    Welch TD; Ting LH
    J Neurophysiol; 2008 Feb; 99(2):1032-8. PubMed ID: 18094102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal controllers resembling postural sway during upright stance.
    Jafari H; Gustafsson T
    PLoS One; 2023; 18(5):e0285098. PubMed ID: 37130115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness control of balance in quiet standing.
    Winter DA; Patla AE; Prince F; Ishac M; Gielo-Perczak K
    J Neurophysiol; 1998 Sep; 80(3):1211-21. PubMed ID: 9744933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance.
    Masani K; Popovic MR; Nakazawa K; Kouzaki M; Nozaki D
    J Neurophysiol; 2003 Dec; 90(6):3774-82. PubMed ID: 12944529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling 3D control of upright stance using an optimal control strategy.
    Qu X; Nussbaum MA
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1053-63. PubMed ID: 21598131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-asymptotical postural stabilization strategy during human quiet stance.
    Yasutake Y; Taniguchi S; Nomura T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1189-92. PubMed ID: 17946447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments.
    Masani K; Vette AH; Popovic MR
    Gait Posture; 2006 Feb; 23(2):164-72. PubMed ID: 16399512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robotic device for understanding neuromechanical interactions during standing balance control.
    Scrivens JE; Deweerth SP; Ting LH
    Bioinspir Biomim; 2008 Jun; 3(2):026002. PubMed ID: 18441409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aging on lateral stability in quiet stance.
    Nishihori T; Aoki M; Jiang Y; Nagasaki S; Furuta Y; Ito Y
    Aging Clin Exp Res; 2012 Apr; 24(2):162-70. PubMed ID: 21464609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling human postural sway using an intermittent control and hemodynamic perturbations.
    Nomura T; Oshikawa S; Suzuki Y; Kiyono K; Morasso P
    Math Biosci; 2013 Sep; 245(1):86-95. PubMed ID: 23435118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical model of human ankle angle changes arising from short peri-threshold anterior translations of platform on which a subject stands.
    Pilkar RB; Moosbrugger JC; Bhatkar VV; Schilling RJ; Storey CM; Robinson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4308-11. PubMed ID: 18002955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control.
    Suzuki Y; Nomura T; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7450-3. PubMed ID: 22256061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bidirectional model of postural sway using force plate data.
    Valles KD; Udoekwere UI; Long JT; Schneider JM; Riedel SA; Harris GF
    Crit Rev Biomed Eng; 2014; 42(6):451-66. PubMed ID: 25955711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.