These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32865611)

  • 21. A multifunctional α-amylase BSGH13 from Bacillus subtilis BS-5 possessing endoglucanase and xylanase activities.
    Liu Z; Li J; Jie C; Wu B; Hao N
    Int J Biol Macromol; 2021 Feb; 171():166-176. PubMed ID: 33421464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-structured amino-acid impact on GH11 differs from GH10 xylanase.
    Liu L; Sun X; Yan P; Wang L; Chen H
    PLoS One; 2012; 7(9):e45762. PubMed ID: 23029229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis.
    Wang L; Cao K; Pedroso MM; Wu B; Gao Z; He B; Schenk G
    J Biol Chem; 2021 Nov; 297(5):101262. PubMed ID: 34600889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis.
    Tian L; Liu S; Wang S; Wang L
    Sci Rep; 2016 Mar; 6():23605. PubMed ID: 27009476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges.
    Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C
    Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A thermostable and CBM2-linked GH10 xylanase from
    Wu X; Shi Z; Tian W; Liu M; Huang S; Liu X; Yin H; Wang L
    Front Bioeng Biotechnol; 2022; 10():939550. PubMed ID: 36091429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger.
    Zhou CY; Li TB; Wang YT; Zhu XS; Kang J
    J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. π-π stacking interaction is a key factor for the stability of GH11 xylanases at low pH.
    Ge HH; Qiu Y; Yi ZW; Zeng RY; Zhang GY
    Int J Biol Macromol; 2019 Mar; 124():895-902. PubMed ID: 30517843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan.
    Charnock SJ; Lakey JH; Virden R; Hughes N; Sinnott ML; Hazlewood GP; Pickersgill R; Gilbert HJ
    J Biol Chem; 1997 Jan; 272(5):2942-51. PubMed ID: 9006940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA.
    Pollet A; Sansen S; Raedschelders G; Gebruers K; Rabijns A; Delcour JA; Courtin CM
    FEBS J; 2009 Jul; 276(14):3916-27. PubMed ID: 19769747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility.
    Marneth K; van den Elst H; Cramer-Blok A; Codee J; Overkleeft HS; Aerts JMFG; Ubbink M; Ben Bdira F
    Chembiochem; 2021 May; 22(10):1743-1749. PubMed ID: 33534182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability.
    Qian C; Liu N; Yan X; Wang Q; Zhou Z; Wang Q
    Enzyme Microb Technol; 2015 Mar; 70():35-41. PubMed ID: 25659630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis.
    Vieira DS; Ward RJ
    J Mol Model; 2012 Apr; 18(4):1473-9. PubMed ID: 21785938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endo-xylanase GH11 activation by the fungal metabolite eugenitin.
    Andrioli WJ; Damásio AR; Silva TM; da Silva VB; Maller A; Nanayakkara NP; Silva CH; Polizeli ML; Bastos JK
    Biotechnol Lett; 2012 Aug; 34(8):1487-92. PubMed ID: 22481300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12.
    Zhang X; Wang S; Wu X; Liu S; Li D; Xu H; Gao P; Chen G; Wang L
    Sci Rep; 2015 Dec; 5():18357. PubMed ID: 26670009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases.
    Payan F; Leone P; Porciero S; Furniss C; Tahir T; Williamson G; Durand A; Manzanares P; Gilbert HJ; Juge N; Roussel A
    J Biol Chem; 2004 Aug; 279(34):36029-37. PubMed ID: 15181003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis.
    Takita T; Nakatani K; Katano Y; Suzuki M; Kojima K; Saka N; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Enzyme Microb Technol; 2019 Nov; 130():109363. PubMed ID: 31421720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to SyXIP-I by site-directed mutagenesis.
    Huang J; Zhang D; Omedi JO; Lei Y; Su X; Wu M; Huang W
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132434. PubMed ID: 38788879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors.
    Sørensen JF; Sibbesen O
    Protein Eng Des Sel; 2006 May; 19(5):205-10. PubMed ID: 16517552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.